Abstract
Summary
The application of nanotechnology in the oil industry has become a useful approach in oil production. The main objective of this study is to investigate the effect of nanofluids on the recovery of heavy crude oil compared with waterflooding. The nanofluids are prepared by the addition of pure and mixed nanoparticles—silicon oxide, aluminum oxide, nickel oxide, and titanium oxide—at different concentrations to the formation water. The prepared nanofluids were screened to determine the suitable type for the heavy oil and rock samples subjected to the study. The effect of nanofluids on the interfacial tension and viscosity of emulsion were also investigated. Nanofluid-flooding tests were performed on a heavy-oil sample of 17.45 °API by use of Berea sandstone core samples with average air permeability of 184 md, liquid permeability of 60 md, and porosity of 20%. After selection of the optimum type of nanofluid, additional tests were performed including effect on asphaltene precipitation by use of a flow-assurance system. Results from the experiments show that the aluminum oxide nanofluid at concentration of 0.05 wt% reduced the emulsion viscosity by 25%. The mixed nanofluid of silicon and aluminum oxides at 0.05 wt% has shown the highest incremental oil recovery among the other nanofluids. It is expected to be the best type of chemical flooding because of its performance in reservoir condition (high pressure, temperature, and water salinity) and its capability to oppose asphaltene precipitation.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献