Ultrahigh-Pressure-Jet-Assisted Drilling Technique: Theory and Experiment

Author:

Xue Liang1,Li Bangmin2,Wang Zhiming1,Li Bangjun2

Affiliation:

1. China University of Petroleum, Beijing

2. Sinopec

Abstract

Summary The ultrahigh-pressure-jet-assisted drilling technique can increase the rate of penetration (ROP) greatly. A downhole boost compressor and an ultrahigh-pressure polycrystalline-diamond-compact (PDC) bit with dual-flow channels are the core techniques of ultrahigh-pressure-jet-assisted drilling. During recent years, the China University of Petroleum, Beijing (CUPB), has focused on theoretical and experimental research--for example, the hydraulic structure and performance of downhole boost compressors, boosting theory, reversing control, rock-breaking mechanics under ultrahigh-pressure-jet conditions, and structural-design theory of ultrahigh-pressure PDC bits with dual-flow channels. On the basis of theoretical research, CUPB has designed and manufactured two generations of downhole-boost-compressor prototypes. At the same time, five oilfield-test experiments have been performed in the SINOPEC ZhongYuan oil field and CNPC TuHa oil field, China. As these experimental results showed, a downhole boost compressor and an ultrahigh-pressure PDC bit with dual-flow channels can increase ROP by over 50% under the five different sets of experimental conditions, and can meet the field-operation requirement. This research, outlined in the paper, played a leading role in the development of the ultrahigh-pressure-jet-assisted drilling technique. As one of the main techniques to increase ROP, ultrahigh-pressure-jet-assisted drilling is always a popular research project, and since the 1960s, research institutes worldwide have made significant progress (Veenhuizen et al. 1996, 1997a, 1997b; Butler et al. 1990). To date, the ultrahigh-pressure-jet-assisted drilling technique has gone through three main stages of development: the ground equipment to boost the pressure (1960s-70s), the ultrahigh-pressure-drill system with dual-flow paths (1980s-90s) (Maurer 1980), and the downhole boost compressor (1990s-present) (Wang 2005, 2008). For downhole boost compressors, there are three different structures: turboboost, screw boost, and piston boost. Compared with the first two structures, piston-boost compressors have a much simpler structure, shorter total length, and better application for deviated wells and horizontal wells (Liu 1993; Meng 1997). CUPB has long been focused on research on a downhole boost compressor that is based on piston-boost structures. The main research results are as follows: boosting theory, downhole-boost-compressor hydraulic structural-design theory, downhole-boost-compressor material research, ultrahigh-pressure-jet hydraulic-character research, structural design of ultrahigh-pressure PDC bit with dual flow channel, and rock-breaking mechanisms of ultrahigh-pressure PDC bits with dual-flow channels. In 2005, CUPB successfully manufactured the first generation of prototypes of downhole boost compressors and ultrahigh-pressure PDC bits with dual-flow channels, and updated to the second generation in 2008. In this process, more than 10 repetitions of laboratory and field experiments were completed, and these results can play a positive role in the development of ultrahigh-pressure-jet-assisted drilling techniques.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3