Mechanisms of Degradation of Cement in CO2 Injection Wells: Maintaining the Integrity of CO2 Seals

Author:

Mura Miki1,Sharma Mukul M.1

Affiliation:

1. Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, TX, US

Abstract

Abstract The degradation of cement due to CO2 exposure affects its transport and mechanical properties, resulting in potential fluid leakage from wells used for CCUS. This study focused on investigating the mechanisms of cement degradation in CO2 injection wells. We employ a fully integrated 3-D reservoir simulator that incorporates fluid flow, geomechanics, and geochemistry, along with a new model designed to accurately replicate the changes in rock properties resulting from cement degradation. Chemical reactions, including dissolution and precipitation, between CO2-rich brine and cement minerals are modeled, allowing for changes in rock and cement properties. Porosity is recalculated considering volume changes due to chemical reactions, and permeability is reevaluated using the Kozeny-Carman equation. Based on the simulation results, the chemo-mechanical composite layer model reassesses mechanical properties, considering the mineral composition of cement. According to the simulation results, the chemical changes in cement exhibited three stages: 1) dissolution of primary minerals, 2) precipitation of carbonates, and 3) re-dissolution of carbonates. While reactions 1 and 2 played a major role, they led to a decrease in rock porosity and a degradation of mechanical properties. However, as the dissolution of primary minerals diminished and the transition from stage 2 to stage 3 began, the porosity increased, accompanied by an increase in mechanical stiffness. The predicted values of porosity were compared to experimental data obtained from prior studies, confirming their consistency for short-term CO2 exposure, which can be reproduced in experiments. These mechanisms of cement degradation and the alteration of mechanical properties that occur in CO2 injection wells agree well with experiments. Our numerical simulator that fully integrates flow, geochemistry, and geomechanics with a chemical reaction model can be used to model more complex cement geometries to evaluate the risks of CO2 escape along the wellbore annulus.

Publisher

SPE

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3