Defining Downhole Contribution/Injection Profile in Multi-Zone Completion by Temperature and Spectral Noise Logging

Author:

Toempromraj Wararit1,Sangvaree Thakerngchai1,Rattanarujikorn Yudthanan1,Pahonpate Chartchai1,Karantharath Radhakrishnan2,Aslanyan Irina2,Minakhmetova Roza2,Sungatullin Lenar2

Affiliation:

1. PTTEP

2. TGT Oilfield Services

Abstract

Abstract Success towards waterflood optimization requires the accessibility of downhole contribution and injection, challenging on the conventional cased-hole multi-zone completion where contribution and injection are gathering through sliding sleeve. This paper will describe the success in defining flow profile behind tubing by utilizing Temperature and Spectral Noise Logging. With response in frequency and noise power when fluid flowing through completion accessories, perforation tunnels and porous media, fluid entry points for producer and water departure point can be located by noise logging. Additionally, conventional temperature logging can usually define degree of intake and outflow along with change in fluid phase as a result of change in temperature. In combination of these implications, downhole flow contribution and injection profile can certainly be determined even though fluid moving in and out through production tubing and casing. Regarding pilot field implemtation in Sirikit field, two multi-zone-completed candidates have been selected, operations were carried-out for producer and injector according to the programs individually designed including logging across perforation intervals and station stops for multi-rate flow, transient and shut-in periods. Longer well stabilization is necessary for injector. In addition to production/injection logging interpretation by incorporating pressure, temperature, density and spinner data, the temperature simulation model is generated to determine downhole flowing/injecting contribution with parameters acquired during logging, for example, pressure and temperature. The other reservoir and fluid properties, e.g. permeability, thickness, hydrocarbon saturation, skin, heat conductivity and capacity have been analog based on available data from neighboring areas. Therefore, the historical data on production and injection including nearby well performance may be crucial to define necessary input to the model. In association with the interpretation of noise logging which is utilized in locating contributing/injecting zones, the interpretation strongly relies on acquired temperature data and outputs of temperature simulation model to match with measured temperature profile. However, limitations have been documented when dealing with multi-phase flow, especially in low flow rate condition – considered 5 BPD as a threshold. Sensitivity run with associated paramenters in the interpretation can significantly reduce the number of uncertainties to match with measured temperature profile. Temperature and Spectral Noise Logging to provide input to temperature model can definitely help accessing downhole injection profile for the injector by taking benefit of one phase injecting and having contrast between injecting fluid and geothermal temperatures. This application can significantly improve the waterflood performance and optimization particularly in high vertical heterogeneous reservoirs – thief zones can be identified and shut-off consequently. However, defining downhole contribution for low-rate oil wells producing from multi-layered depleted reservoirs especially in undersaturated condition is still a challenge.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3