Model of Hydraulic Fracture Initiation from the Notched Open Hole

Author:

Aidagulov Gallyam1,Alekseenko Olga1,Chang Frank F.2,Bartko Kirk2,Cherny Sergey3,Esipov Denis3,Kuranakov Dmitry3,Lapin Vasily3

Affiliation:

1. Schlumberger

2. Saudi Aramco

3. Institute of Computational Technologies SBRAS

Abstract

Abstract In stimulating tight carbonate formations, the propagation of multiple transverse fractures is highly desirable to contact as much matrix as possible. The application of this method to openhole well environments is challenged by the dominating impact of hoop stresses in the near-wellbore vicinity rather than far-field stress in the producing layer. As a result, even if the open hole is drilled in the direction of minimal horizontal far-field stress, there is a high probability that hydraulic fractures initiate longitudinally and then turn to the preferred fracture plane, creating undesired tortuosity. One of the approaches towards controlling both the position and direction of fracture initiation is to cut notches in the wellbore wall at specified positions. As pressure increases during fracturing, those notches can locally eliminate the influence of the wellbore hoop stress and develop high tensile stress concentrations initiating transverse hydraulic fractures at lower pressures. A theoretical model is proposed herein that aims to predict the position, orientation, and pressure at which a fracture initiates. In the model, the 3D stress state around wellbore and notch(es) is analyzed using the brittle fracture criteria. In the numerical implementation, the stresses are efficiently resolved using the boundary element method. The model is used to interpret published laboratory data on fracture initiation including those from hydraulic fracturing block tests. It is shown that the conventional maximum tensile stress (MTS) criterion fails to reproduce the observed trends in initiation pressure and fracture orientation. The nonlocal modification of the MTS criterion based on the stress averaging technique (SAMTS), reveals a good match with initiation pressures in simplified tests. When applied to hydraulic fracturing block test data, SAMTS captures the observed fracture orientations while overestimating the absolute pressure values. The discussion of possible reasons for that overestimate and the way forward concludes the paper.

Publisher

SPE

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3