The Effects of Fluid Viscosity and Density on Proppant Transport in Complex Slot Systems

Author:

Bahri Ashtiwi1,Miskimins Jennifer1

Affiliation:

1. Colorado School of Mines

Abstract

Abstract The main functions of hydraulic fracturing fluids are to create a fracture network and to carry and place the proppant into the created fractures networks, thus, adding to fracture conductivity. Significant research has been performed to develop ideal fracturing fluid systems. The development focus has mainly been on optimization of a fluid rheology that can transport and place the proppant into the primary and any subsidiary fractures with less damage to the formation and at a lower cost. The main goal of this work is to add to the understanding and optimization of proppant transport in complex hydraulic fracture networks. Specifically for this study, focus is placed on two different fluids, water-glycerin solution and water-sodium chloride solution, representing varying fluid densities and viscosities. The effects of changing fluid viscosities, densities, proppant densities, proppant sizes, proppant concentrations, and slurry injection rates on proppant transport were then experimentally investigated. This experimental work shows that viscosity has a greater impact on the proppant transport than fluid density does, thus implying a larger impact on the resulting fracture conductivity. The results of this work show that a water-glycerin solution, with a viscosity of 4.3 cp, has significant proppant carrying capacity with proppants delivered uniformly to greater distances. On the other hand, the results show that a water-sodium chloride solution of 9.24 ppg density has less capability to carry the proppant deep into the fractures indicating that viscosity has a greater impact on the proppant transport than fluid density does. The lab results also showed that increasing proppant concentrations and injection rates has a positive impact on proppant transport.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3