Bottom-Hole Assembly Analysis Using the Finite-Element Method

Author:

Millheim Keith1,Jordan Steven2,Ritter C.J.2

Affiliation:

1. Amoco Production Co.

2. Marc Analysis Research Corp.

Abstract

The complex behavior of most bottom-hole assemblies can be analyzed using the finite-element method. If the wellbore trajectory, hole diameter, fluid density, and assembly dimensions are known, various properties can be determined. The tendency of a bit either to build or to drop angle can be assessed. Introduction Predicting the actual trajectory of a drilling bit is very Predicting the actual trajectory of a drilling bit is very complex. Many variables interact causing the bit to follow a certain trajectory. Assembly configuration and dimensions, lithology, dip, bit, type, hole curvature, magnitude of inclination, bit weight, and rotary speed are some of the more important parameters that control inclination and azimuth of the bit. The drilling industry has been aware of directional problems and the need to understand these problems for problems and the need to understand these problems for many years. The first major approach was presented by Woods and Lubinski, who emphasized the importance of the bottom-hole assembly makeup. First, the "slick assembly" was analyzed to show the importance of the point of tangency, collar diameter, etc. Further research point of tangency, collar diameter, etc. Further research introduced the concept of single stabilizer placement to increase the point of tangency so that the negative or pendulum forces could be increased. Early research pendulum forces could be increased. Early research recommended multispaced stabilizers to increase the bottom-hole assembly stiffness. This commonly was referred to as the "packed-hole assembly." Currently, most assembly designs are based on the slick, single, or multistabilizer configurations. Exceptions are the use of square collars, mud motors, and special directional tools. Field experience is an important aspect of this technology. Actual assemblies and drilling situations are too complex to rely on the simpler idealizations that do not account for varying collar dimensions, material properties, and multistabilizer arrangements. Recognizing this, properties, and multistabilizer arrangements. Recognizing this, new technology is being developed using numerical solution methods and high-speed digital computers. These techniques have been presented in the literature. Fischer and Bradley et al. analyzed various assemblies that had negative side force tendencies, using a finite-difference approximation. They also investigated square collars, hole inclination, and other important effects. Similar computer programs exist. This paper presents a numerical approach that has gained popularity in other engineering applications. This technique, known as the finite-element method, is used to solve four bottom-hole assemblies. One is a moderate building assembly, the others range from a holding assembly with a slight dropping tendency to a stronger dropping assembly. The basic finite-element technique used for analyzing these four assemblies is presented. The method of solution using a general-purpose, finite-element system is described, along with the mathematical idealizations that achieve tangency of the collars with the wellbore. The nonlinear solution for one assembly demonstrates how the collars react as the load is applied to the system. The solutions for each assembly show various reaction forces and displacements. From the side force at the bit, the general inclination tendency can be determined. The effects of large displacement and boundary contact also are discussed. Technical Approach The Finite-Element Method JPT P. 265

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3