Mechanisms Causing Disproportionate Permeability Reduction in Porous Media Treated With Chromium Acetate/HPAM Gels

Author:

Willhite G. Paul1,Zhu H.2,Natarajan D.1,McCool C. S.1,Green D. W.1

Affiliation:

1. U. of Kansas

2. Inst. of Petroleum Exploration and Development (PRC)

Abstract

Summary It is well established that treatment of porous rocks with gelled polymer systems can cause the permeability of water at residual oil saturation to be reduced by one to three orders of magnitude more than the permeability of oil at the water saturation that is immobile after treatment. This phenomenon is called disproportionate permeability reduction (DPR) and is of interest because application of gel treatments in production wells has potential to reduce water production. The mechanisms that cause this phenomenon are not well understood. This paper describes how permeability to oil and water is developed in pore space that is filled with a chromium acetate/ partially hydrolyzed polyacrylamide (HPAM) gel and proposes a mechanism for DPR based on the interpretation of the experimental data. Experimental data for the flow of oil and brine were obtained in unconsolidated sandpacks and in Berea sandstone cores with and without residual oil saturation after a chromium acetate/Alcoflood 935 gelant was injected and gelled in situ. Interpretation of the experimental data suggests that oil permeability develops as oil penetrates into the gel-filled pore space, dehydrating the gel by displacing brine from the gel structure and creating "new flow channels" within or around the gel. The "new pore space" is a fraction of the original porosity, and the permeability to oil is reduced substantially from its value before placement and in-situ gelation of the gelant. Subsequent brine injection displaces oil from these flow channels but traps some of the oil in the new pore space as a residual saturation. The trapping of residual oil in the new pore space causes the disproportionate reduction in brine permeability because the brine flows primarily in the pore channels created by dehydration of the gel even though the gel has some brine permeability. When gelant is placed in a matrix containing residual oil, dehydration of the gel reconnects some of the trapped oil, and the oil permeability increases. Subsequent brine displacement experiments conducted at the same pressure drop showed that initial brine permeability was reduced by factors of 100 to 1,000 more than the oil permeability, verifying the existence of DPR.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3