Footage in STACK Lateral of Oklahoma Increased by 185% through New Non-Planar PDC Cutter Geometry Development and Implementation

Author:

Lyons N..1,Izbinski K..1,Pauli A..1,Gavia D..1,Hoffman M..1,Cantrell B..1,Bryant S..1

Affiliation:

1. Baker Hughes, a GE company

Abstract

Abstract The development of improved synthesis techniques for polycrystalline diamond compacts (PDC) positively impacted fixed cutter drill bit performance. Coupled with these advances, recent developments in cutter geometry show improved cutter performance in many applications. Laboratory and field testing has demonstrated that modifying the face geometry of the PDC cutter used in a fixed cutter bit is one of the most direct ways to affect the efficiency and longevity of the bit's cutting structure. This paper describes a new non-planar cutter face geometry that has increased footage drilled, rate of penetration (ROP), and improved the bit dull condition in the Meramec formation in western Oklahoma's STACK play. A drilling mechanics focused team created a finite element analysis (FEA) model of the rock cutting process to optimize cutter face geometry for improved cutting efficiency. The new non-planar geometry enabled better cutting efficiency and improved cutter cooling. Multiple lab tests were then used to verify the model's predictions. Results from single cutter lab tests showed an 11% increase in cutting distance as measured in a vertical turret lathe test, a 30% decrease in cutting edge temperature from a pressurized cutting test, and a 10% increase in load capacity compared to a previous non-planar geometry in a face load test. Full-scale pressurized drilling tests in the lab showed that a PDC bit with the new geometry was 15% less aggressive with equivalent-to-lower mechanical specific energy (MSE) when compared to the same PDC bit with a previous generation non-planar cutter. Field tests were conducted with the new non-planar geometry applied to a commercial 0.529 inch [13mm] cutter on a standard 8-1/2 in. drill bit design used in the Meramec Lateral application. The paper reviews in detail three test cases in this multiple bit lateral section using the same bit design with and without the new non-planar cutters. In two test wells, we saw direct improvement of 185% distance drilled on average and an18.3% boost in ROP. At least 17 bit runs have been completed in this application using the new non-planar feature, proving it to be a beneficial enhancement. Similar performance improvement has been observed in other applications as well. The optimized cutter geometry has led to further and faster runs, resulting in significant time savings and improved consistency. The use of advanced cutter geometries provides a significant boost in drilling performance beyond that normally achieved through fixed cutter bit design optimization and materials improvements.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3