Permeable Tar Mat Formation Within the Context of Novel Asphaltene Science

Author:

Dumont Hadrien1,Mishra Vinay1,Zuo Julian Y.1,Mullins Oliver C.1

Affiliation:

1. Schlumberger

Abstract

ABSTRACTTar mats at the oil-water contact (OWC tar mats) in oilfield reservoirs can have enormous, pernicious effects on production due to possibly preventing of any natural water drive and precluding any effectiveness of water injectors into aquifers. In spite of this potentially huge impact, tar mat formation is only now being resolved and integrated within advanced asphaltene science. Herein, we describe a very different type of tar mat which we refer to as a "rapid-destabilization tar mat"; it is the asphaltenes that undergo rapid destabilization. To our knowledge, this is the first paper to describe such rapid-destabilization tar mats at least in this context. Rapid-destabilization tar mats can be formed at the crest of the reservoir, generally not at the OWC and can introduce their own set of problems in production. Most importantly, rapid-destabilization tar mats can be porous and permeable, unlike the OWC tar mats. The rapid-destabilization tar mat can undergo plastic flow under standard production conditions rather unlike the OWC tar mat. As its name implies, the rapid-destabilization tar mat can form in very young reservoirs in which thermodynamic disequilibrium in the oil column prevails, while the OWC tar mats generally take longer (geologic) time to form and are often associated with thermodynamically equilibrated oil columns. Here, we describe extensive data sets on rapid-destabilization tar mats in two adjacent reservoirs. The surprising properties of these rapid-destabilization tar mats are redundantly confirmed in many different ways. All components of the processes forming rapid-destabilization tar mats are shown to be consistent with powerful new developments in asphaltene science, specifically with the development of the first equation of state for asphaltene gradients, the Flory-Huggins-Zuo Equation, which has been enabled by the resolution of asphaltene nanostructures in crude oil codified in the Yen-Mullins Model. Rapid-destabilization tar mats represent one extreme while the OWC tar mats represent the polar opposite extreme. In the future, occurrences of tar in reservoirs can be better understood within the context of these two end members tar mats. In addition, two reservoirs in the same minibasin show the same behavior. This important observation allows fluid analysis in wells in one reservoir to indicate likely issues in other reservoirs in the same basin.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3