History Matching and Production Forecast With Logs as Effective Completion and Reservoir-Managing Tools in Horizontal and Vertical Wells

Author:

Haro Carlos F.1

Affiliation:

1. Occidental Oil & Gas

Abstract

Summary Simulation history matching is a daunting, time-consuming task with numerous unknowns and several plausible answers. Scale differences in the data frequently obscure results, limiting its application in completion strategies. Good history matching does not guarantee accurate production forecasts, however. Reliable predictions, required for well planning, depend on the ability of the user to reduce the uncertainties to find consistent and timely solutions. Logs can provide appropriate conditioning data for history matching to enable its use for reservoir management. Electrofacies, capillary pressure, and absolute and relative permeability, imprinted on logs, can be mathematically linked with irreducible water saturation (Swi). Unlike reservoir simulators, well logs are at the right scale for completion designs. Logs facilitate upscaling, honoring rock and fluid properties and the physics of flow (Haro 2006). Logs are snapshot measurements that are amenable for conversion into dynamic forecasting tools by use of flow and pressure equations. This concept permits creation of synthetic production logs (SPLTs) over time, from which production decline can be calculated. This method consists of integrating material balance, flow/ pressure algorithms, fluid data, cores, and log data. Thus, the corresponding analytical expressions are required. In this approach, every well represents a finite, gridded tank, capable of producing a measurable volume of fluids, limited by its petrophysical constraints. Superposition, in terms of pressure and flow, combines the various components within and among wells. The quality of the results is ensured because material balance must be honored at every depth at all times under different production scenarios and the prevailing drive mechanism. This log-handling technique helps when making strategic economic decisions to maximize reserves and optimize the reservoir-development plan. This strategy is used to obtain oil in place (OIP), drainage radii, lateral connectivity, fluid-bank arrival times, productivity indices (PIs), inflow performance relationship (IPR), production allocation, and recovery per zone per well. Current log analyses or simulators generally do not provide these parameters at this detail. This refined use of logs streamlines completion designs and improves conformance, enabling us to comply with an important part of daily reservoir management.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3