Chemical EOR in Low Permeability Reservoirs

Author:

Delamaide Eric1,Tabary Rene2,Rousseau David2

Affiliation:

1. IFP Technologies (Canada) Inc.

2. IFP Energies nouvelles

Abstract

Abstract Low permeability reservoirs contain a significant and growing portion of the world oil reserves, but their exploitation is often associated with poor recovery even after waterflood. Miscible or immiscible gas injection is usually the first choice in terms of EOR methods but it is not always feasible for instance due to lack of adequate supply. In such cases chemical EOR is often considered. In this paper we propose to examine the specific challenges of chemical EOR in low permeability reservoirs by reviewing the well documented chemical EOR field operations that were implemented in reservoirs ranging from conventional low permeability (around 100 mD) to so-called tight reservoirs (few mD). Shale plays where permeability is in the µD range and which only produce when simulated by hydraulic fractures are not considered in our investigation. We show that what works at the lab scale in low permeability plugs cannot be automatically transposed to the field scale. In particular low permeability can lead to injectivity issues and uncontrolled fracturing due to near wellbore plugging or simply to the high pressures required to propagate the injected chemical over large distances. Another challenging aspect of chemical EOR in low permeability reservoirs is the high chemical adsorption due to important surface to volume ratio and specific mineralogy, as in the case of carbonates (fractured or not). Success and failures of chemical EOR pilots in such challenging reservoirs, including innovative approaches such as wettability alteration, are reviewed. Overall, this review will provide the reader with an updated view of past and on-going developments in chemical EOR applied to low permeability reservoirs. It should help operators determine whether a given low permeability reservoir is eligible to such processes or not.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3