Status of Data-Driven Methods and their Applications in Oil and Gas Industry

Author:

Balaji Karthik1,Rabiei Minou1,Suicmez Vural2,Canbaz Celal Hakan3,Agharzeyva Zinyat4,Tek Suleyman5,Bulut Ummugul6,Temizel Cenk7

Affiliation:

1. University of North Dakota

2. QRI Analytics

3. Schlumberger

4. Texas A & M University

5. University of the Incarnate Word

6. Texas A&M University-San Antonio

7. Aera Energy LLC

Abstract

Abstract Data-driven methods serve as robust tools to turn data into knowledge. Historical data generally has not been used in an effective way in analyzing processes due to lack of a well-organized data, where there is a huge potential of turning terabytes of data into knowledge. With the advances and implementation of data-driven methods data-driven models have become more widely-used in analysis, predictive modeling, control and optimization of several processes. Yet, the industry overall is still skeptical on the use of data-driven methods, since they are data-based solutions rather than traditional physics-based approaches; even though physics and geology are often part of this methodology. This study comprehensively evaluates the status of data-driven methods in oil and gas industry along with the recent advances and applications. This study outlines the development of these methods from the fundamentals, theory and applications perspective along with their historical acceptance and use in the industry. Major challenges in the process of implementation of these methods are reviewed for different areas of applications. The major advantages and drawbacks of data-driven methods over the traditional methods are discussed. Limitations and areas of opportunities are outlined. Recent advancements along with the latest applications, the associated results and value of the methods are provided. It is observed that the successful use of data-driven methods requires strong understanding of petroleum engineering processes and the physics-based conventional methods together with a good grasp of traditional statistics, data mining, artificial intelligence and machine learning. Data-driven methods start with a data-based approach to identify the issues and their solutions. Even though data-driven methods provide great solutions on some challenging and complex processes, that are new and/or hard to define with existing conventional methods, there is still skepticism in the industry on the use of these methods. This is strongly tied to the delicacy and sensitive nature of the processes and on the usage of the data. Organization and refinement of the data turn out to be important components of an efficient data-driven process. Data-driven methods offer great advantages in the industry over that of conventional methods under certain conditions. However, the image of these methods for most of the industry professionals is still fuzzy. This study serves to bridge the gap between successful implementation and more widely use and acceptance of data-driven methods, and the fuzziness and reservations on the understanding of these methods in the industry. Significant components of these methods along with clarification of definitions, theory, application and concerns are also outlined in this study.

Publisher

SPE

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3