Case Study Demonstrating the Estimation of Depth-Continuous Formation Anisotropy with Application to Geomechanics and Seismic Velocity Model Calibration

Author:

Hornby Brian1,Wang Ruijia1,Collins Mark1,Kim JoonShik1,Confer Rachel1

Affiliation:

1. Halliburton

Abstract

Abstract This paper presents a case study in which new methods that use full-waveform sonic data are applied in an unconventional well setting to determine depth-dependent elastic anisotropy of formations penetrated by the well and estimate parameters of interest. The study objectives include the following: Estimate Thomsen's shear anisotropy parameter γ in an unconventional well that penetrates fast formationsUse rock physics and other approximations to further estimate a complete vertical transverse isotropic (VTI) elastic tensor at each depthCompare results with ground truth in terms of dynamic and static core measurementsUse these results to derive anisotropic geomechanical parameters for well completion and fracture treatment design and to compute upscaled seismic-equivalent elastic anisotropy for the calibration of anisotropic seismic velocity models Formation speeds in this well were extremely fast, typical for unconventional shale reservoirs, which created a challenging environment for estimating VTI Thomsen's parameter γ because of the extreme sensitivity of the inversion to the accuracy of the borehole fluid slowness estimate. The key to the study's success was development and application of methods to invert for a depth-dependent mud slowness curve. This allowed for much more accurate inversion of the VTI parameter γ than the conventional method that uses a constant mud slowness value. In addition to enabling a more accurate inversion, it is observed that the mud slowness curve not only varied with depth [likely because of pressure/temperature (P/T) changes and possible settling] but also reflected quite different properties across a drilling fluid pill that was placed around the reservoir formations. This analysis provides an additional benefit for drilling engineers because the mud slowness curve tracks mud property changes in the well and can determine the actual location of the drilling fluid pill after placement and stabilization. Additional work estimated the depth-continuous elastic tensor and geomechanics (anisotropic Poisson's ratios and Young's moduli necessary for computing horizontal stresses) for well completion and fracture treatment design. Seismic-scale properties were estimated using anisotropic Backus averaging for the calibration of the anisotropic seismic velocity model for prestack depth migration.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncertainty quantification of anisotropic elastic constants and mud speed using borehole sonic data;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3