An Experimental Study on the Effects of Competitive Adsorption During Huff-N-Puff Enhanced Gas Recovery

Author:

Wolf Jeremy1,Maaref Sepideh1,Esmaeili Sajjad2,Tutolo Benjamin1,Kantzas Apostolos2

Affiliation:

1. Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada

2. Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada PERM Inc., Calgary, AB, Canada

Abstract

AbstractGas is stored in tight reservoirs both as a free gas occupying the pores, and as an adsorbed gas on the rock matrix. Adsorbed gas exhibits liquid-like densities resulting in significantly more gas being stored on the rock surface. This research aims to highlight the effects of competitive adsorption during Huff-n-Puff enhanced gas recovery (EGR) on activated carbon to achieve maximum gas recovery. Pure methane was initially adsorbed by the activated carbon sample in four simple pure component adsorption stages. The methane was then produced in a primary production stage, allowing some methane to desorb from the activated carbon. The free and adsorbed methane was then displaced in five subsequent cyclical injection/production stages with a displacing gas, either nitrogen or carbon dioxide. The experiments were conducted at 30 °C, 45 °C, and 80 °C, and the temperature was maintained using a water bath. The purpose of testing a variety of temperatures was to highlight the effect of temperature on competitive adsorption and recovery factors. From the experiments, adsorption capacity was plotted as a function of the isothermal pressure and methane composition. This data was then fitted with the Extended Langmuir model because of its popularity and simplistic approach for multicomponent gas mixtures. It was observed that total adsorption capacity decreased as a function of temperature for both the nitrogen and carbon dioxide displacement experiments. Selectivity ratios were also determined for each experiment. At all temperatures, carbon dioxide had a higher selectivity ratio over methane compared to the selectivity ratio between nitrogen and methane. Selectivity ratios did not correlate with changing temperatures in both sets of experiments. Recovery factors were also determined for each experiment. Incremental recovery factors progressively decreased with each subsequent production stage. Cumulatively, the carbon dioxide experiments exhibited higher recovery at each temperature tested. For these experiments, irreversibilities were not considered due to the authors’ previous experience with single-component adsorption and desorption experiments on activated carbon [1]. To date, there have not been any EGR Huff-n-Puff experiments conducted on highly porous activated carbon samples with a primary focus on the effect of competitive adsorption. This research aims to highlight the effects of temperature and displacement gas type on the competitive adsorption between methane and nitrogen/carbon dioxide and its impact on the recovery factors. By doing so, EGR schemes can be better understood and modeled with improved inputs for competitive adsorption in each injection and production cycle. This will allow for more accurate production forecasting and help minimize the financial risk of costly EGR projects.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3