New Insights into the Mechanism of Mobility Reduction by Associative Type Copolymers

Author:

Reichenbach-Klinke Roland1,Stavland Arne2,Langlotz Björn3,Wenzke Benjamin4,Brodt Gregor4

Affiliation:

1. BASF Construction Polymers GmbH

2. International Research Institute of Stavanger

3. BASF Construction Chemicals GmbH

4. BASF SE

Abstract

Abstract New thickeners based on associative properties and their application in enhanced oil recovery are discussed. The new thickeners are anionic, water-soluble, hydrophobically modified copolymers. The rheological properties as well as the flow properties in porous media have been evaluated. In bulk the polymer viscosity is shear thinning and the viscosity vs. shear rate profile is comparable with other synthetic EOR polymers. For most of the other tested parameters, the new thickeners differ from what is assumed as the standard properties for EOR polymers. The relative viscosity increases by increasing the temperature, especially at low shear rates. The core flood experiments revealed a significant mobility reduction in sandstone cores, both at ambient and elevated temperature. The mobility reduction demonstrated strongly shear thinning behavior. For standard EOR polymers the main contribution to the mobility reduction and improved mobility ratio is the polymer viscosity, while for the new thickeners the mobility reduction seems to be dominated by reversible polymer retention that is lowering the permeability. Post water injection resulted in low permeability reduction. However, the time to regain the permeability was significant. Flood experiments with the associative polymer in Bentheim sandstone cores showed significantly increased oil production. The incremental oil recovery was interpreted by the capillary number which due to the high mobility reduction exceeded the critical capillary number. Because of the high mobility reduction a further increase in oil production would have been possible by only slight reduction of the oil-water interfacial tension by addition of small amounts of a surfactant. Moreover the new associative polymer seems to be more shear stable than other synthetic EOR polymers.

Publisher

SPE

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3