Air-Foam-Injection Process: An Improved-Oil-Recovery Technique for Waterflooded Light-Oil Reservoirs

Author:

Dong X..1,Liu H..1,Sun P..1,Zheng J..2,Sun R..2

Affiliation:

1. China University of Petroleum (Beijing)

2. Jidong Oilfield Company, China National Petroleum Corporation

Abstract

Summary With the intent of solving problems that emerge at the later stage of waterflooded reservoirs, we study the feasibility of air-foam flooding of waterflooded light-oil reservoirs using the method of physical simulation. Through isothermal combustion experiments, the influence of clay mineral and foam on low-temperature-oxidation (LTO) reactions is investigated qualitatively. Then, the quantitative investigation of water saturation on oxidation rate and O2 consumption rate is discussed. After that, some dynamic foam displacement experiments are also performed, including the singletube displacement experiments of air foam at different water saturations and enhanced-oil-recovery (EOR) experiments of air-foam flooding in parallel tubes. In addition, in order to verify the O2 consumption capacity of the sample oil, a slimtube experiment is conducted. The results show that the presence of clay minerals could speed the process of the LTO reaction, while the presence of foam will slow this process. The LTO reaction is not significantly associated with oil viscosity. The concentration of O2 was near zero when the gas breakthrough occurred. Once the oxidation region reached the outlet, the concentration of O2 suddenly increased, and the effect of O2 consumption became worse. G64-38 crude oil performs better in the process of O2 consumption. The injection of air foam could effectively plug the high-permeability tube and restart the low-permeability tube. This paper could be used as a tool for the successful design of air-foam flooding at a later waterflood stage to enhance crude-oil recovery in light-oil reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation Research on EOR Technology and Mechanism of Sandstone Reservoir Injected with Foam;Chemistry and Technology of Fuels and Oils;2023-09

2. Current Status and Future Trends of In Situ Catalytic Upgrading of Extra Heavy Oil;Energies;2023-06-09

3. Application of Air-Foam Flooding in Petroleum Field: Progress and Challenges;Proceedings of the 9th International Conference on Energy Engineering and Environmental Engineering;2023

4. Factors influencing the stability of natural gas foam prepared by alkyl polyglycosides and its decay rules;Journal of Petroleum Science and Engineering;2021-01

5. Enhanced oil recovery;Petroleum Engineer's Guide to Oil Field Chemicals and Fluids;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3