Directional-Permeability Assessment in Formations With Complex Pore Geometry With a New Nuclear-Magnetic-Resonance-Based Permeability Model

Author:

Chi Lu1,Heidari Zoya2

Affiliation:

1. Texas A&M University

2. University of Texas at Austin

Abstract

Summary This paper proposes a new method for directional-permeability assessment with nuclear-magnetic-resonance (NMR) measurements. Conventional techniques for permeability assessment from NMR measurements include empirical correlations such as SDR (Schlumberger-Doll-Research) and Coates models. However, carbonate rocks are known for lack of good correlations between pore-body-size and pore-throat-size, which makes it challenging and often unreliable to estimate permeability from NMR T2 (spin-spin relaxation time) distribution in carbonate formations with complex pore structure. It also was proposed that conventional permeability models can be improved by incorporating an estimated pore-connectivity factor. However, none of the previously introduced techniques reflects the anisotropic characteristics of rock permeability. The new NMR-based directional-permeability model, introduced in this paper, incorporates a directional pore-connectivity factor into a conventional NMR-based permeability model. We introduce two approaches to quantify the directional pore-network connectivity of rock samples with pore-scale images. The first approach calculates directional pore connectivity in 3D pore-scale images with a topological technique. The second approach combines image analysis and electrical formation factor. The new NMR-based permeability model enables assessment of rock permeability in any desired direction. We successfully calibrated and tested the introduced NMR-based permeability model on carbonate, sandstone, and sandpack samples with complex pore geometry or anisotropic permeability. The anisotropic permeability used for calibration and test purposes was obtained by the lattice Boltzmann method (LBM) simulations on microcomputed tomography (CT) images of rock samples. The comparison between the permeability estimates with our new NMR model and conventional NMR models (e.g., SDR and Coates models) demonstrated that the NMR-based directional-permeability model significantly improves assessment of rock permeability, by reflecting rock's anisotropic characteristics and minimizing calibration efforts. The outcomes of this research can significantly improve permeability assessment in complex carbonate reservoirs and anisotropic sandstone reservoirs, and can be extended further to organic-rich mudrock formations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3