Affiliation:
1. The University of Texas at Austin
Abstract
Abstract
New polymers that are stable in harsh environments (high salinity/hardness and high temperature) are in high demand because of the need for chemical EOR in oil reservoirs with these conditions. Commonly used partially hydrolyzed polyacrylamides (HPAM) have been successfully used in the field for decades, but they hydrolyze at high temperature and eventually precipitate in the presence of high concentrations of divalent cations. This paper mainly focuses on rheology and transport behavior of scleroglucan (non-ionic polysaccharide) and N-vinylpyrrolidone (NVP)-polyacrylamide (AM) co-polymer. The rigid, rod-like, triple helical structure of scleroglucan imparts exceptional stability and its non-ionic functionality makes it insensitivity to salinity and hardness. By a different mechanism, NVP in modified HPAM protects the polymer's amide group against thermal hydrolysis, i.e., by sterically hindering the amide group. This allows maintaining high viscosity even in high salinity brines at high temperature. Both scleroglucan and NVP co- or ter-polymers show good filterability and transport properties in sandstone and carbonate cores at high temperature and in brine with high salinity and hardness. Therefore, both polymers are promising candidates for polymer flooding, surfactant-polymer flooding and alkali-surfactant-polymer flooding in hard brine at high temperature, but must be evaluated under specific reservoir conditions.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献