Rapid Flood Operation Analysis and Optimization: A Case Study from the Midland Basin

Author:

Liu Guoxiang1,Bruns Alex1,Murrell Glen1

Affiliation:

1. Baker Hughes a GE Company

Abstract

Abstract The effectiveness of secondary and tertiary recovery projects depends heavily on the operator's understanding of the fluid flow characteristics within the reservoir. 3D geo-cellular models and finite element/difference-based simulators may be used to investigate reservoir dynamics, but the approach generally entails a computationally expensive and time-consuming workflow. This paper presents a workflow that integrates rapid analytical method and data-analytics technique to quickly analyze fluid flow and reservoir characteristics for producing near "real-time" results. This fast-track workflow guides reservoir operations including injection fluid allocation, well performance monitoring, surveillance, and optimization, and delivers solutions to the operator using a website application on a cloud-based environment. This web-based system employs a continuity governing equation (Capacitance Resistance Modelling, CRM) to analyze inter-well communication using only injection and production data. The analytic initially matches production history to determine a potential time response between injectors and producers, and simultaneously calculates the connectivity between each pair of wells. Based on the inter-well relationships described by the connectivity network, the workflow facilitates what-if scenarios. This workflow is suitable to study the impact of different injection plans, constraints, and events on production estimation, performance monitoring, anomaly alerts, flood breakthrough, injection fluid supply, and equipment constraints. The system also allows automatic injection re-design based on different number of injection wells to guide injection allocation and drainage volume management for flood optimization solutions. A field located in the Midland basin was analyzed to optimize flood recovery efficiency and apply surveillance assistance. The unit consists of 11 injectors and 22 producers. After optimization, a solution delivering a 30% incremental oil production over an 18-month period was derived. The analysis also predicted several instances of early water breakthrough and high water cut, and subsequent mitigation options. This system couples established waterflood analytics, CRM and modern data-analytics, with a web-based deliverable to provide operators with near "real-time" surveillance and operational optimizations.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3