A Comprehensive Rheological Study for a Flowing Polymer-Based Drilling Fluid Used for Wellbore Strengthening

Author:

Magzoub Musaab Ibrahim1,Salehi Saeed1,Hussein Ibnelwaleed Ali2,Nasser Mustafa Saleh2

Affiliation:

1. Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, Oklahoma, USA.

2. Gas Processing Center, College of Engineering, PO Box 2713, Qatar University, Doha, Qatar.

Abstract

Abstract Loss circulation encountered in highly fractured formations, depleted reservoir, or HP/HT intervals is the root cause of many problems plaguing the oil and gas sector for many years. High pore pressure narrows the window of safe drilling, while in depleted reservoir fracture pressure is remarkably reduced, which may lead to a lower pressure-bearing capacity. Therefore, a proper predrill wellbore strengthening strategy is needed to anticipate wellbore issues and design drilling fluids that strengthen unstable formations. This study benefits from the successful applications of polymers in water shut-off. Whereas polymers are used to entirely plugs high water productive zones, the flowing polymer-based mud (PBM) is proposed and evaluated to enhance wellbore strengthening. Based on the API drilling fluids testing procedures, varied polyacrylamide/polyethyleneimine PAM/PEI systems were tested and ammonium chloride (NH4Cl) is added as a retarder to control gelling time as need. Base fluid formulated with PAM/PEI was optimized to attain the desired rheological properties. Weighting and other commercial essential additives were also added, and the formula is tested for rheology, stability, and sealing efficacy. Our proposed PBM formula with proper concentration of polymer in water and optimized PAM to PEI ratio is found to be highly competitive in comparison with the conventional methods of loss circulation prevention and wellbore strengthening techniques. This paper introduces an innovative design for a flowing polymer-based mud (PBM) for wellbore strengthening and provides wide-range of assessment. Moreover, the essential rheological characteristics revealed in this study for several PAM/PEI mud systems under various conditions can set the stage for wide application of these muds globally where tremendous reduction in drilling non-productive time (NPT) can be achieved.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3