Foam for Gas Mobility Control in the Snorre Field: The FAWAG Project

Author:

Blaker Tore1,Aarra Morten G.1,Skauge Arne1,Rasmussen Lars1,Celius Harald K.2,Martinsen Helge Andre2,Vassenden Frode3

Affiliation:

1. Norsk Hydro ASA

2. Sepro A/S

3. SINTEF Petroleum Research

Abstract

Summary The Foam Assisted Water Alternating Gas (FAWAG) project has been a full-scale field demonstration of foam for gas mobility control. It was carried out in the Snorre field on the Norwegian Continental Shelf from 1997 to 2000, with support from the European Commission's Thermie Program. A production well treatment to reduce the producing gas/oil ratio (GOR) was performed in 1996. The FAWAG was initiated in the Central Fault Block (CFB) of the Snorre field in August 1998. A commercial surfactant system, AOS (α-olefin-sulphonate), with a carbon chain length mix of C14/C16, was chosen as the foaming agent. Approximately 2000 tons of commercial grade AOS surfactant have been injected. Foam for mobility control in the CFB operation had to be aborted because of operative problems in the target injector P-25A. The main operational conclusion from the CFB operations was that surfactant alternating gas (SAG) injection is preferable to coinjection. Operationally, SAG injection is almost identical to water alternating gas injection (WAG), which is a well-known production method. The concluding demonstration was performed on the Western Fault Block (WFB) in well pair P32-P39. The target injector and producer wells are approximately 1500 m apart. A total of 380 tons of commercial grade surfactant was used. The surfactant was divided into two slugs, each followed by gas injection that lasted until original gas injectivity was restored. The production from WFB has shown that large volumes of gas have been stored, either temporarily or permanently, in the reservoir. It has been estimated that the FAWAG treatment has contributed approximately 250 000 Sm3 of oil. The cost of the treatment in WFB was approximately U.S. $1 million.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3