A Cohesive-Zone Model for Simulating Hydraulic-Fracture Evolution within a Fully Coupled Flow/Geomechanics-Simulation System

Author:

Alpak Faruk O.1

Affiliation:

1. Shell International Exploration and Production

Abstract

Summary A modular multiphysics reservoir-simulation system is developed that has the capability of simulating multiphase/multicomponent/thermal flow, poro-elasto/plastic geomechanics, and hydraulic-fracture evolution. The focus of the work is on the full-physics hydraulic-fracture-evolution-simulation capability of the multiphysics simulation system. Fracture-growth computations use a cohesive-zone model as part of the computation of fracture-propagation criterion. The cohesive-zone concept is developed using energy-release rates and cohesive stresses. They capture the strain-softening behavior of deforming porous material consistent with real-life observations of poro-plastic deformation. Thus, they can be reliably used within both poro-elastic and poro-plastic geomechanics applications, unlike the conventional stress-intensity-factor-based fracture-propagation criterion. The partial-differential equations (PDEs) that govern the Darcy-scale multiphase/multicomponent/thermal flow, poro-elasto/plastic geomechanics, hydraulic-fracture evolution, and laminar channel flow in the fracture are tightly coupled to each other to give rise to a numerical protocol solvable by the fully implicit method. The ensuing nonlinear system of equations is solved by use of a novel adaptively damped Newton-Raphson method. Example fully coupled single-phase isothermal-flow, geomechanics, and hydraulic-fracture-growth simulations are analyzed to demonstrate the predictive power of the simulation system. Numerical-model predictions of fracture length/radius and width are validated against analytical solutions for plane-strain and ellipsoid-shaped fractures, respectively. Results indicate that the simulation system is capable of modeling hydraulic-fracture evolution accurately by use of the cohesive-zone model as the propagation criterion. We also simulate and explore the sensitivities around a real-life hydraulic-fracture-growth problem by fully accounting for the thermal-, multiphase-, and compositional-flow effects.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3