Case Study of the Use of a Digital Twin for Leak Detection and Quantification in Underground Gas Storage Wells

Author:

Abdo Elia1ORCID,Baronio Emanuele2ORCID,Mauro Stefano3ORCID,Troise Mario3ORCID,Salamina Laura3ORCID

Affiliation:

1. Snam Spa (Corresponding author)

2. Snam Spa

3. Politecnico di Torino

Abstract

Summary Underground gas storage (UGS) wells are essential components in energy security. However, UGS wells present a complicated and delicate combination of elements where ensuring safe and secure functionality over long periods is paramount. This paper showcases how a digital twin is used to evaluate and forecast the link between leaks and temperature and pressure trends in a UGS well, allowing the identification and quantification of defects and, subsequently, well barrier integrity. The digital twin used for this application presents advantages compared with other solutions present on the market with regard to the simplified configuration; that is, with minimal input data, the system can produce an accurate and useful output, which is then used in the well integrity decision-making process. UGS wells present additional criticalities with respect to normal production wells due to their longer life span and the repetitive production and injection cycles. This makes early and accurate leak detection essential for the safe management of the well barriers. The proposed digital twin simulates the trends of pressure and temperature within each annulus and compares results with data from the field, allowing the identification of the position and size of leaks. A genetic algorithm is applied to optimize the placement of leaks on their specific barriers. Once a leak is identified, a risk assessment is conducted to evaluate the overall integrity of the well. If the status of the well is found to be critical enough, an intervention may be planned. The studies presented show how the digital twin has been used on two wells with similar problems. At first, it has confirmed the necessity to put the well out of service as opposed to planning maintenance, thereby saving both time and cost. In the second case, it allowed the validation of a solution that led to a 60% reduction in failure consequence, allowing the well to continue operating without major costs or risks. The errors of the resulting simulations were always confined within the 0.5 bar limit highlighting its accuracy. The system has been in use for over a year and has shown great potential in accurate and efficient identification of leaks. This has accelerated the process of well integrity evaluation and allowed timely interventions on wells that required it. On the other hand, the process has highlighted cases where previous assumptions about leak location and size were corrected using the digital twin, therefore reducing the costs of interventions. Finally, the model showcases a clear readiness for predictive capabilities aimed to select, plan, and design fit for purpose mitigating actions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference21 articles.

1. On the Conseptual Model of Oil and Gas Business Transformation in the Transitional Conditions to the Industry 4.0, Scientific Papers of the University of Pardubice;Alexandrova;Sci Pap Univ Pardubice D, Fac Econ Adm,2019

2. Digital Twin for Well Integrity with Real Time Surveillance;Anjos,2020

3. Cement Sheath Stress Failure;Goodwin;SPE Drill Eng,1992

4. Assessment of Prospects and Directions of Digital Transformation of Oil and Gas Companies;Flaksman;IOP Conf Ser: Mater Sci Eng,2020

5. Development of a Digital Twin for Well Integrity Management in Underground Gas Storage Fields;Busollo,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3