Affiliation:
1. University of Saskatchewan (Corresponding author)
2. University of Saskatchewan
Abstract
Summary
For the purpose of exploration and extraction, the drilling process in the mining and oil and gas industries is very complicated because of the obvious invisibility of the operation of the drill bit. Acoustic/vibrational telemetry has been of keen interest because it is so far the only method that allows a high data transfer rate as well as less data loss, over other methods. The method certainly depends on the use of the right communication tools and efficient communication schemes to achieve the highest data transfer rate. Although the acoustic method provides a very high data transmission rate, it also has its limitations. However, limitations can be overcome through certain approaches and the use of technologies. The proper use of a communication device with the steel pipe is the most important factor to consider so that the transducer works as the right actuator for the pipeline. The type of sensor that is used to pick up the data also plays a major role because signals are most likely to attenuate, and a sensitive sensor is necessary to collect these attenuated signals. This research demonstrates the use of a transducer as a communication device and oil and gas pipe as the medium of data transmission. The transducer can be used both as an actuator driver and as a receiver sensor. A new piezoelectric transducer was manufactured for this research, which was used with a test setup of a total 184 ft length of six oil and gas pipes. The test setup performed well and data were sent through this setup successfully. A communication scheme is developed using novel theories to achieve the highest data transfer rate. The scheme is tested with the transfer function data obtained from the experimental system. The communication scheme developed outputs a signal, which is a type of binary phase-shift keying signal data along with an equalizer filter. Then the signals developed from the scheme are used in the actual experimental setup to test the speed of the transmission and bit error rate (BER). For the six oil and gas pipes setup, the scheme provides a data transmission of 153 bits/sec (bps) with zero error percentage, which is high enough to use in any oil and gas industry.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology