Experimental Investigation of Two-Phase Flow Performance of Electrical Submersible Pump Stages

Author:

Pessoa Rui1,Prado Mauricio2

Affiliation:

1. PDVSA-Intevep

2. The University of Tulsa

Abstract

Abstract Two-phase flow behavior prediction of centrifugal pumps is a hard task due to the complexity involved in modeling multiphase flow inside turbo machines. No models are currently available for this purpose. Some empirical correlations are available in the literature, but they are valid only for the tested pumps in the experimental range used to develop them. An experimental study has been conducted at The University of Tulsa Artificial Lift Projects – TUALP with a 22-stages GC6100 pump to gather data for pump performance under two-phase flow conditions. Air and water were used as working fluids. This study differs from other experimental works because the pressure changes were recorded stage-by-stage. The results of previous works have been reported as an average of the intake and discharge conditions, and depend on the number of stages used. Phenomena like surging and gas locking were observed during these tests and their boundaries have been mapped. It will provide some insight regarding when they appear, and the way they are revealed. The pressure increment and total hydraulic horsepower for the average pump and per stage as a function of the liquid flow rate, and each gas flow rate considered are presented. The average brake horsepower and efficiency for the pump are also plotted for the variables mentioned. The results indicate that the average behavior for the pump is significantly different from that observed per stage. Introduction Centrifugal pumps are dynamic devices which use kinetic energy to increase liquid pressure. They are successful with handling water and other incompressible fluids ranging from low to medium viscosities but are severely impacted by free gas or highly compressible fluids. Significant amounts of free gas may be found during hydrocarbons production. This motivated important research from the petroleum industry focusing on improving the successful application of ESP as an artificial lift method. The consequences of entrained gas on centrifugal pumps depend on the relative amount of gas and liquid present, and vary from a slight deterioration on performance up to a complete blockage known as "gas locking". Before gas locking occurs, another phenomenon known as surging takes place. Each pump is characterized by performance curves, which include the head developed, brake horsepower consumption and efficiency as function of the flow rate through the pump for a certain rotational speed (see Fig 1). Traditionally these curves are determined experimentally using water. The head characteristic curve is used to size the pump, while the brake horsepower information is useful to size the motor required to drive the pump. The sizing of a multi-stage ESP for water wells is fairly simple, and good accuracy of the predicted performance is achieved using the water performance information supplied by the manufacturer. The design of an ESP system using the water information for oil wells with high free gas fraction at pump intake conditions is a harder task, and is based on the prediction of performance curves by modification of the water curves. The leading parameter is the mixture density at the flow conditions of each stage. Applying this procedure, the ESP system often shows some degree of under or over sizing when operating. An accurate prediction of the performance for any pump handling free gas is challenging. Some empirical and mechanistic approaches have been attempted in the past. The main problem of the experimental approach is that the developed correlations are based on the average performance of the pump. These correlations become specific for the type and number of stages tested. On the other hand, theoretical models are difficult to develop since the geometry of the channels inside the pump is complex. The phenomena that take place in such channels are not well understood, and thus the use of empirical parameters to close the model is required.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3