Formulating Water-Based Muds for High Temperature Wellbores Using Potassium Formate Brine and Synthetic Polymers: A Design of Experiment Approach

Author:

Ofei Titus Ntow1,Al Bendary Rami Mohamed1

Affiliation:

1. Universiti Teknologi PETRONAS

Abstract

Abstract The use of water-based mud (WBM) in drilling applications under extreme reservoir temperatures has been increasing rapidly in the drilling industry over the past few years. It is now more crucial than ever to close the technological gap that present challenges towards developing an environmentally friendly and cost effective high performance WBMs. Synthetic polymers such as sodium salt of sulfonated acrylamide and vinyl lactam (DD) and sodium salt of sulfonated acrylamide, acrylic amide, sodium acrylate and vinyl lactam (DT) are commonly used as primary viscosifiers and fluid loss agents in WBM systems for HPHT fluids. Potassium formate brine (KCHO2) is usually used to stabilize the drilling fluid's performance under HPHT conditions as it helps in decreasing the flocculation of rheological properties of WBM under extreme temperature including the degradation of their rheolo s. It is known that WBMs experience many challenges when exposed to extreme temperatures gical properties over a long period of time. This study aims to developing a water-based drilling mud that is stable at elevated temperatures up to 300°F, while maintaining sufficient inhibitive and good rheological performances. Various drilling mud additives such as synthetic polymers (DD and DT), KCHO2 and other fluid loss additives were investigated in the formulation of the stable WBM. A total of sixteen (16) drilling fluid samples with different concentrations of synthetic DD (1 ppb to 4 ppb), DT (1 ppb to 4 ppb), and KCHO2 (0 wt.% to 10 wt.%) were formulated using the Taguchi design of experiment (DOE), prepared and tested before and after dynamic aging. The experimental results obtained showed that the following drilling mud formulations had their rheological property (PV/YP) values stabilised even after dynamic aging at 300°F: (a) 3.2 wt.% KCHO2, 3 ppb DD, and 4 ppb DT, (b) 6.7 wt.% KCHO2, 2 - 4 ppb DD, and 2 - 4 ppb DT, and (c) 10.0 wt.% KCHO2, 1 - 4 ppb DD, and 1 - 4 ppb DT. This study provides an optimisation guide for the formulation of stable synthetic polymers and potassium formate brine WBMs at elevated temperatures up to 300°F, thus, saving time and cost by eliminating various laboratory tests.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3