Direct Thickening of Supercritical Carbon Dioxide Using CO2-Soluble Polymer

Author:

AlYousef Zuhair1,Swaie Othman1,Alabdulwahab Amin1,Kokal Sunil1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Two major applications of injecting dense carbon dioxide (CO2) into the petroleum reservoirs are enhanced oil recovery and sequester CO2 underground. For enhanced oil recovery applications, CO2 has low miscibility pressure causing the swelling of crude oil and reducing its viscosity therefore improving the macroscopic sweep process. However, the low viscosity of injected CO2 compared with the reservoir fluids causes the fingering of CO2, which may lead to bypassing huge amount of oil, early breakthrough of CO2, and increasing the gas to oil ratio (GOR). The use of direct thickeners, such as polymers, is one of the techniques used to increase the CO2 viscosity. Nevertheless, the solubility of polymers in CO2 and the high cost of soluble polymers are the main challenges facing this technique. In this study, a novel, soluble, and cost-effective thickener is proposed to directly increase the CO2 viscosity. In this study, a PVT high pressure and high temperature (HPHT) apparatus was used to evaluate the compatibility and the solubility of the thickener in dense CO2. Also, a custom designed apparatus was used to measure the viscosity of dense CO2 in the presence of the thickener at different conditions. The assessment was conducted at different experimental pressures, temperatures, and thickener concentrations. The effect of pressure on the solubility of the thickener in CO2 and on the measured viscosity of CO2 was evaluated at 1500, 2000, 2500, and 3000 psi. Also, the influence of temperature was evaluated at 25 and 50°C. Moreover, the concentrations used to study the effect of thickener concentration on the measured viscosity of CO2 ranged between 0.10-2 %. The results from laboratory experiments clearly demonstrated that the addition of the thickener at certain conditions can significantly impact the dense CO2 viscosity. The results revealed that there must be a minimum pressure at which the thickener dissolves in the dense CO2. The solubility of the thickener can occur when the CO2 is either in the liquid or supercritical phase. The results also pointed out that the CO2 viscosity increased as the pressure increased. The increase of CO2 pressure can significantly impact the solubility of the thickener in the dense CO2 and consequently the CO2 viscosity. The increase of the thickener concentration also had a significant impact on the measured CO2 viscosity. The results showed that the CO2 viscosity increased with the thickener concentration. The CO2 viscosity increased 100 to 1200 -fold as a result of adding the thickener depending on the experimental conditions

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3