Thermodynamic Modelling on Wellbore Cement Integrity During Underground Hydrogen Storage in Depleted Gas Reservoirs

Author:

Zeng Lingping1,Sarmadivaleh Mohammad1,Saeedi Ali1,Al-Yaseri Ahmed2,Dowling Claire3,Buick Glen3,Xie Quan1

Affiliation:

1. Curtin University

2. King Fahd University of Petroleum and Minerals

3. Beach Energy

Abstract

Abstract Objectives/Scope Underground hydrogen storage (UHS) has been raising more interest to safely and cost-effectively store hydrogen at large-scale to help the transition from fossil fuel to sustainable energy and to achieve net-zero emission target. During hydrogen subsurface storage particularly in depleted gas reservoirs, the wellbore plays an important role in injection and reproduction to meet seasonal energy demand. However, it is still unclear how wellbore cement would react with stored hydrogen in the presence of formation brine, which may effect long-term cement integrity. We thus performed thermodynamic modelling on cement reactions with hydrogen and water at reservoirs conditions. Methods, Procedures, Process The dissolution of individual components of cement including C3S, C2S, C3A, C4AF and gypsum of Class G/H, and potential precipitation of twenty secondary minerals were simulated at an infinite time scale at reservoir temperature and pressure (representing the worst case scenario of cement degradation from geochemical perspective; in real case, the degree of cement degradation would be much less than the results from thermodynamic modelling as it is a time-dependent process). The extent of cement mineral reactions with hydrogen was compared with that of methane and carbon dioxide to assess the wellbore cement integrity during UHS compared to UGS and CCS. Results, Observations, Conclusions The cement hydration process would lead to the transformation of the major cement compositions C3S and C2S to C1.5SH (CSH) and portlandite. Adding hydrogen would only slightly change the percentage of C1.5SH and portlandite and generate a small fraction of new mineral mackinawite. As a comparison, adding methane would generate a considerable amount of calcite. When CO2 is involved, all CSH compounds would transform to calcite through the cement carbonation process. Overall, the compositional mineral phases of cement after cement hydration is more closed to the case involving H2 compared to CH4 and CO2, implying a relatively low risk of wellbore cement degradation during UHS. Novel/Additive Information Our work underlines the importance of incorporating geochemical modelling in hydrogen geo-storage evaluation when using existing old wells and new drilled wells.

Publisher

SPE

Reference53 articles.

1. High-density automotive hydrogen storage with cryogenic capable pressure vessels;Aceves;International Journal of Hydrogen Energy,2010

2. Analytical and experimental evaluation of insulated pressure vessels for cryogenic hydrogen storage;Aceves;International Journal of Hydrogen Energy,2000

3. Geochemical reactions-induced hydrogen loss during underground hydrogen storage in sandstone reservoirs;Bo;International Journal of Hydrogen Energy,2021

4. Decarbonisation futures: Solutions, actions and benchmarks for a net zero emissions Australia;Butler,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3