The Use of Association-Rule Mining and High-Dimensional Visualization To Explore the Impact of Geological Features on Dynamic-Flow Behavior

Author:

Suzuki Satomi1,Stern Dave1,Manzocchi Tom2

Affiliation:

1. ExxonMobil Upstream Research Company

2. University College Dublin

Abstract

Summary Because of computational advances in reservoir simulation with high-performance computing, it is now possible to simulate more than thousands of reservoir-simulation cases in a practical time frame. This opens a new avenue to reservoir-simulation studies, enabling exhaustive exploration of subsurface uncertainty and development/depletion options. However, analyzing the results of a large number of simulation cases still remains a challenging and overwhelming task. We propose a new method that enables the efficient analysis of massive reservoir-simulation results, often consisting of thousands of cases, by discovering interesting patterns of relationships among variables in large data sets. The method uses a well-known data-mining method, called association-rule mining, together with a high-dimensional visualization technique. We demonstrate the capability of the proposed method by using it to analyze the reservoir-simulation results from the Sensitivity Analysis of the Impact of Geological Uncertainty on Production (SAIGUP) project, which is an interdisciplinary reservoir-modeling project carried out earlier by Manzocchi et al. (2008a). To investigate the influence of geological features on oil recovery in shallow marine reservoirs, numerous reservoir models were built and flow-simulated in the SAIGUP project. In this paper, we analyze the simulation results from an ensemble of 9,072 models, which cover all possible combinations of several structural and sedimentological parameters individually varied to describe geological uncertainty. To be able to analyze the simulation results from such exhaustive sampling from high-dimensional model parameter space, it is crucial to efficiently decompose complex interactions between model parameters and to discover hidden impacts on flow response. By coupling the association-rule mining algorithm and high-dimensional visualization, such interactions and impacts are rapidly extracted and visualized in such a way that engineers and geoscientists can interpret meaningful sensitivities “at a glance.” This methodology provides a novel way to rapidly interpret flow response from a large ensemble of reservoir models without being overwhelmed by massive data.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3