Compositional Simulation of CO2 Huff ’n’ Puff in Eagle Ford Tight Oil Reservoirs With CO2 Molecular Diffusion, Nanopore Confinement, and Complex Natural Fractures

Author:

Yu Wei1,Zhang Yuan2,Varavei Abdoljalil3,Sepehrnoori Kamy3,Zhang Tongwei3,Wu Kan4,Miao Jijun5

Affiliation:

1. Texas A&M University and University of Texas at Austin

2. China University of Geosciences, Beijing

3. University of Texas at Austin

4. Texas A&M University

5. SimTech

Abstract

Summary Although numerous studies proved the potential of carbon dioxide (CO2) huff ’n’ puff, relatively few models exist to comprehensively and efficiently simulate CO2 huff ’n’ puff in a way that considers the effects of molecular diffusion, nanopore confinement, and complex fractures for CO2. The objective of this study was to introduce a numerical compositional model with an embedded-discrete-fracture-model (EDFM) method to simulate this process in an actual Eagle Ford tight oil well. Through nonneighboring connections (NNCs), the EDFM method can properly and efficiently handle any complex fracture geometries. We built a 3D reservoir model with six fluid pseudocomponents. We performed history-matching with measured flow rates and bottomhole pressure (BHP). Good agreements between field data, EDFM, and local grid refinement (LGR) were achieved. However, the EDFM method performed faster than the LGR method. After that, we evaluated the CO2-enhanced-oil-recovery (EOR) effectiveness for molecular diffusion and nanopore confinement effects. The traditional phase equilibrium calculation was modified to calculate the critical fluid properties with nanopore confinement. The simulation results showed that the CO2 EOR with larger diffusion coefficients performed better than the primary production. In addition, both effects were favorable for the CO2 huff ’n’ puff effectiveness. The relative increase of cumulative oil production after 20 years was approximately 12% for this well. Furthermore, when considering complex natural fractures, the relative increase of cumulative oil production was approximately 8%. This study provided critical insights into a better understanding of the impacts of CO2 molecular diffusion, nanopore confinement, and complex natural fractures on well performance during the CO2-EOR process in tight oil reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3