Impact of Nanomaterials on the Rheological and Filtration Properties of Water-Based Drilling Fluids

Author:

Salih A. H.1,Elshehabi T. A.1,Bilgesu H. I.1

Affiliation:

1. West Virginia University

Abstract

Abstract Nanomaterials are the new additives for drilling fluids that can improve its properties and eliminate problems due to increased downtime and well costs. The objective of this research is to select the optimum concentration of nanoparticles that enhance drilling fluid properties and hydraulics. This study investigates the effects of commercially available nanoparticles on the rheological and filtration properties and optimizes the hydraulics of water-based drilling fluids. In this study, the samples were prepared as water-based muds with and without various concentrations of 5.7 nm colloidal silica dioxide nanoparticles. Series of laboratory experiments were carried out for all samples using standard API Low Pressure Low Temperature (LPLT) filtration and rheological tests. Two mud systems at different pH conditions were used to evaluate the impact of nanoparticles. A commercial software was used to evaluate the impact of the nanoparticles on the Equivalent Circulation Density (ECD) and the circulation pressure loss in a deviated wellbore. Results show enhancements in the rheological and filtration properties for water-based muds treated by the nanoparticles used in this study with concentrations below 0.7% by weight. Furthermore, the results show the ability of these nanoparticles to make the filter cake consistent, compacted, and thin. The results reflect the negative impact of the nanoparticles with concentrations above 0.7% by weight on some of the rheological properties. The optimum nanomaterial concentrations with the best properties were observed as (0.1%-0.3%) by weight. Furthermore, the concentration of 0.1% by weight reflected the significant reduction in the ECD and the circulating pressure loss. Nanoparticles used in this research can play a vital role in reducing drilling problems. Multilateral wells, slim holes and deep horizontal wells can be drilled by using water-based mud with the addition of proper nanoparticles and eliminating the need for oil-based muds that are expensive and environmentally unacceptable. However, it is critical to select the proper size and concentration of nanoparticles in order to eliminate its negative impact on the drilling fluid properties.

Publisher

SPE

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3