IAST Modelling of Competitive Adsorption, Diffusion and Thermodynamics for CO2-ECBM Process

Author:

Asif Mohammad1,Wang Lei1,Hazlett Randy1,Serikov Galymzhan1

Affiliation:

1. School of Mining and Geosciences, Nazarbayev University, Kazakhstan

Abstract

Abstract Objective/Scope The CO2 emission is one of the main causes for the global warming and it may be controlled by sequestrating CO2 into the geological formation. The coalbed formation provides a dual advantage for CO2 sequestration as CO2 may be stored in coal forever with enhancing the coalbed methane recovery. Thus, the cost of CO2 sequestration may be offset completely or partially. The main objective of the paper was to comprehend the CO2-ECBM displacement using the three concepts viz. competitive adsorption, diffusion, and thermodynamic modelling of coal Methods, procedure, and process In this paper, the pure gas isotherm on coal for CH4, and CO2 was evaluated using manometric method. The binary gas isotherm or competitive adsorption was studied using IAST modelling. MATLAB code was developed for the solution of IAST model and Newton Raphson approach was followed. The IAST modelling was done by taking 50%/%50 mole fraction of CH4/CO2. By analyzing the binary gas isotherm, the optimum injection pressure was evaluated. On the same injection pressure, co adsorption isotherm was drawn at different mole fraction of CO2 in gas phase. Separation factor was calculated by taking ratio of CO2 and CH4 in the gas and adsorbed phase respectively. Furthermore, adsorption data was used for discussing the sorption kinetics in coal and diffusion coefficient was evaluated. Furthermore, the thermodynamic parameters were also calculated and integrated with above noted parameters for the methane displacement in CO2-ECBM process. Results, observations, and calculations The CO2-ECBM displacement is very much dependent on the competitive adsorption and diffusion process in coal. The surface potential and Henry constant are important parameters for defining the CO2-ECBM displacement. The coadsorption isotherm was drawn at the optimum injection pressure and it shows that methane displacement would be the optimum by taking 11 %/89% mole fraction of CO2 and CH4 for two temperatures i.e., 288 K, 308 K. It is identified through diffusion regime that diffusion coefficient for the binary gas isotherm is the average of the diffusion coefficients of pure CO2 and CH4. Novel/Additive information This is the first kind of study which provides the completely integrated approach for describing the methane displacement in CO2-ECBM process. This novel study promotes our understanding of the complex mechanisms of CO2-ECBM displacement process.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3