Investigation of Geomechanical Response of Fault in Carbonate Reservoir and Its Application to Well Placement Optimization in YM2 Oilfield in Tarim Basin

Author:

Cai Zhenzhong1,Zhang Hui1,Yang Haijun1,Yin Guoqing1,Zhu Yongfeng1,Chen Peisi1,Han Xingjie1

Affiliation:

1. Tarim Oilfield PetroChina

Abstract

Abstract YM2 Oilfield is an ultra-deep carbonate oilfield located in the northern uplift of Tarim Basin in western China. We have identified 108 seismically resolvable faults formed over three periods. These faults control the distribution of oil and gas accumulation units. Permeability differs significantly amongst various faults, and various sections of the fault planes. There has been no effective quantitative evaluation measure on the relative opening or sealing of faults for a long time, the sealing capacity of the faults have not been evaluated so far. This has a negative impact on the evaluation of accurate reservoir compartmentalization and partitioning, and evaluation of various oil and gas flow units which are critical for constraining the development program and production performance of oil field. There are many geological factors that influence the permeability of faults, such as burial depth, fault throw, dip angle, strike, lithology variation, pore pressure and the in-situ stress field. After evaluating these factors in the YM2 oilfield, we determined that the critical factor that controls fault permeability is the geomechanical response of faults under the current stress field. In order to determine if the faults are permeable relatively in the current stress state, we established the geomechanical model of YM2 reservoir which describes the present-day stress regime, along with the vertical and horizontal distribution of the geomechanical parameters of this reservoir. Based on the interpretation of 3D seismic data, we characterized the spatial combination relations of faults in the reservoir and extracted the occurrence information of each fault according to certain step size. Then, we calculated the normal and shear stress acting on the various fault planes in order to evaluate whether those faults are permeable relatively in the current stress state. It is shown that the fault zone not only controls the evolution of local structure, but also significantly impacts the regional stress field, which in turn impacts the geomechanical response of fault zone and their permeability. The NW strike-slip faults in the southeastern part of the oilfield in particular are characterized by high values of normal stress and low shear-to-normal stress ratios with relative lower permeability. Producing wells in this region have low productivity and weak connectivity amongst wells. In contrast, the northwestern area that has NE strike-slip faults and NS thrust faults have low stress but high shear to normal stress ratios, and hence relatively higher permeability. The surrounding wells have higher inter-well connectivity and are more productive. In the same fault zone, as the relationship between stress and fault orientation changes, the potential mechanical behavior also affects permeability variation and well productivity. The main reason is that the interaction between faults and stress field leads to the increased reservoir heterogeneity in the fault zone or among faults. Based on this concept, we chose several advantageous well locations, where horizontal minimum principal stress is low, anisotropy of horizontal stress and shear-to-normal stress ratio are high. This study classified the faults of YM2 oilfield based on geomechanical response, clarified permeability variation of various fault zones and their impact on productivity, and then it provided the quantitative selection basis for well placement and wellbore trajectory optimization.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3