Detection of Iron Disulfide Materials in Geological Porous Media Using Spectral Induced Polarization Method

Author:

Badhafere D.1ORCID,Kirmizakis P.2ORCID,Oshaish A.1ORCID,El-Husseiny A.3ORCID,Mahmoud M.1ORCID,Ntarlagiannis D.4ORCID,Soupios P.3ORCID

Affiliation:

1. Department of Petroleum Engineering, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals

2. Department of Geosciences, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals (Corresponding author)

3. Department of Geosciences, College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals

4. Department of Earth and Environmental Sciences, Rutgers University

Abstract

Summary Iron sulfide (FeS) scale is a known problem that can significantly impact oil and gas (O&G) production. However, current monitoring methods cannot detect the problem at early stages, not until it is too late for any meaningful remedial action. Spectral induced polarization (SIP) is an established geophysical method increasingly used in near-surface environmental applications. The unique characteristics of the SIP method, mainly the sensitivity to both bulk and interfacial properties of the medium, allow for the potential use as a characterization and monitoring tool. SIP is particularly sensitive to metallic targets, such as FeS, with direct implications for the detection, characterization, and quantification of FeS scale. In a column setup, various concentrations of pyrite (FeS2), a common form of FeS scale, within calcite were tested to examine the SIP sensitivity and establish qualitative and quantitative relationships between SIP signals and FeS2 properties. The concentration of FeS2 in the samples directly impacts the SIP signals; the higher the concentration, the higher the magnitude of SIP parameters. Specifically, the SIP method detected the FeS2 presence as low as 0.25% in the bulk volume of the tested sample. This study supports the potential use of SIP as a detection method of FeS2 presence. Furthermore, it paves the way for upcoming studies utilizing SIP as a reliable and robust FeS scale characterization and monitoring method.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3