Laboratory Evaluation of Organic Water Shut-off Gelling System for Carbonate Formations

Author:

Al-Anazi M. S.1,Al-Mutairi S. H.1,Al-Khaldi M. H.1,Al-Zahrani A. A.1,Al-Yami I. S.1,Gurmen M. N.2

Affiliation:

1. Saudi Aramco

2. Schlumberger

Abstract

Abstract Water production can reduce or block oil and gas production rates. In addition, the lifting, handling, and disposal of produced water negatively impact the hydrocarbon production economics. Among several techniques for water control, crosslinked polymer systems are the most effective for certain water shut-off projects. The objective of this paper is to assess the effectiveness of crosslinked polymer system for water control applications in carbonate formations and present its optimal formulation. This paper presents a detailed lab testing of a cross-linked polymer system. The system includes a gelling agent, primary and secondary crosslinkers and an acidic activator. The evaluation covered extreme concentrations of all components, temperatures up to 212°F, differential pressures up to 1,500 psi, actual field water salinity, wide range of permeability, and extended testing time up to three months. Core-flood experiments along with Computerized Tomography Scanning and Environmental Scanning Electron Microscopy were used to assess the sweep efficiency and the strength of the gel inside the core plugs. Losses of active ingredients from effluent samples were measured using Thermal Gravimetric Analyzer. Results of carbonate core plugs were compared with that of Berea sandstone. Strength of the gel at different cross-linker and polymer concentrations was monitored using sealed glass ampoules. Gelation times were measured using bottle tests and rotational viscometers. Extreme vertices design was used to optimize the experimental work and mixture triangle was used to represent the final results. An optimal gelling system with controlled gelation time and maximum performance was attained for the targeted formation at 212°F. It was found that the gelation time was affected by the three main components of the gelling system. The acetic acid-based activator was found to have the highest effect on the gelation time. However, this activator was not effective when the gelling system was tested in carbonate core plugs. A major effort of this work was to develop alternative strategies for the ineffectiveness of acidic activator in carbonaceous formations.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3