Successful Hybrid Slickwater-Fracture Design Evolution: An East Texas Cotton Valley Taylor Case History

Author:

Handren Patrick1,Palisch Terry2

Affiliation:

1. Denbury Resources Inc, LP

2. CARBO Ceramics

Abstract

Summary As the development of tight/unconventional and partially depleted gas reservoirs has increased, so has the demand for more-innovative hydraulic-fracture designs. Operators are increasingly placing proppant with slickwater, linear gel, or hybrid fracture designs. While the benefits of these designs typically are attributed to a reduction in gel damage of the proppant pack, many operators mistakenly believe that the resulting fractures are not conductivity-limited. Because few (if any) models on the market can adequately model the propagation of a slickwater fracture along with the associated proppant transport and deposition, it becomes difficult to optimize these fracture designs. This has led many operators to assume incorrectly that only small-diameter sand or resin-coated sand may be placed in these types of designs, and that these products supply ample flow capacity. However, one east Texas operator has combined insight into proppant transport with an appropriate understanding of realistic proppant-pack conductivity to develop a novel, hybrid slickwater-fracture design. This design has allowed the placement of larger-diameter, higher-conductivity proppant in fractures that many believed could not be placed in fractures either operationally or economically. Additionally, this operator has developed a unique pumping strategy to place the highest-conductivity proppant in portions of the fracture where it provides the most value. This paper will present a case history of these new hybrid slickwater-fracture designs in this operator's east Texas Cotton Valley Taylor (CV-T) completions. The design theory and sequential improvements will be documented, including larger-diameter, higher-strength proppants, and a novel placement design. Field results from the first six wells fractured will be presented, showing substantial increases in gas production compared with similar offset completions. Economics will also be shown to illustrate the tremendous value added to completions using this hybrid fracture design.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3