Applications of Artificial Neural Network for Seismic Facies Classification: A Case Study from the Mid-Cretaceous Reservoir in Supergiant Oil Field

Author:

Al-Ali Ali1,Stephen Karl1,Shams Asghar1

Affiliation:

1. Heriot-Watt University

Abstract

Abstract Facies classification is significant for characterization and evaluation of a reservoir because the distribution of facies has an important impact on reservoir modelling which is important for decision making and maximizing return. Facies classification using data from sources such as wells and outcrop cannot capture all reservoir characterization in the inter-well region and therefore as an alternative approach, seismic facies classification schemes have to be applied to reduce the uncertainties in the reservoir model. In this research, a machine learning neural network was introduced to predict the lithology required for building a full field earth model for carbonate reservoirs in Sothern Iraq. In the present research, multilayer feed forward network (MLFN) and probabilistic neural network (PNN) were undertaken to classify facies and its distribution. The well log that was used for litho-facies classification is based on a porosity log. The spatial distribution of litho-facies was validated carefully using core data. Once successfully trained, final results show that PNN technique classified the carbonate reservoir into four facies, while the MLFN presented two facies. The final results on a blind well, show that PNN technique has the best performance on facies classification. These observations implied this reservoir consists of a wide range of lithology and porotype fluctuations due to the impact of depositional environment. The work and the methodology provide a significant improvement of the facies classification and revealed the capability of probabilistic neural network technique when tested against the neural network. Therefore, it proved to be very successful as developed for facies classification in carbonate rock types in the Middle East and similar heterogeneous carbonate reservoirs.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3