A Cut-Cell Polyhedral Finite Element Model for Coupled Fluid Flow and Mechanics in Fractured Reservoirs

Author:

Shovkun I1,Tchelepi H. A.2

Affiliation:

1. Stanford University (Corresponding author)

2. Stanford University

Abstract

Summary Mechanical deformation induced by injection and withdrawal of fluids from the subsurface can significantly alter the flow paths in naturally fractured reservoirs. Modeling coupled fluid flow and mechanical deformation in fractured reservoirs relies on either sophisticated gridding techniques or enhancing the variables (degrees of freedom) that represent the physics to describe the behavior of fractured formation accurately. The objective of this study is to develop a spatial discretization scheme that cuts the “matrix” grid with fracture planes and utilizes traditional formulations for fluid flow and geomechanics. The flow model uses the standard low-order finite volume method with the compartmental embedded discrete fracture model (cEDFM). Due to the presence of nonstandard polyhedra in the grid after cutting/splitting, we use numerical harmonic shape functions within a polyhedral finite element (PFE) formulation for mechanical deformation. To enforce fracture-contact constraints, we use a penalty approach. We provide a series of comparisons between the approach that uses conforming unstructured grids and an unstructured discrete fracture model (uDFM) with the new cut-cell PFE formulation. The manuscript validates and compares both methods for linear elastic, single-fracture slip, and Mandel’s problems with tetrahedral, Cartesian, and perpendicular-bisectional (PBI) grids. Finally, the paper presents a fully coupled 3D simulation with multiple inclined intersecting faults activated in shear by fluid injection, which caused an increase in effective reservoir permeability. Our approach allows for great reduction in the complexity of the (gridded) model construction while retaining the solution accuracy together with great savings in the computational cost compared with uDFM. The flexibility of our model with respect to the types of grid polyhedra allows us to eliminate mesh artifacts in the solution of the transport equations typically observed when using tetrahedral grids and two-point flux approximation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3