Case Studies of Integrated Flowback Analysis: Examples from the Montney and Duvernay Formations

Author:

Clarkson Christopher R.1,Williams-Kovacs Jesse2,Zhang Zhenzihao1,Yuan Bin1,Ghanizadeh Amin1,Hamdi Hamidreza1,Islam Arshad3

Affiliation:

1. University of Calgary

2. University of Calgary and Sproule Associated Limited

3. Baytex Energy Corp.

Abstract

Abstract Recently it has been demonstrated that rate-transient analysis (RTA) performed on flowback data frommulti-fractured horizontal wells (MFHWs) can provide timely estimates of hydraulic fracture properties. This information can be used to inform stimulation treatment design on upcoming wells as well as other important operational and development decisions. However, RTA of flowback data may be complicated by rapidly changing operating conditions, dynamic hydraulic fracture properties and multi-phase flow in the fractures, complex fracture geometry, and variable fracture and reservoir properties along the MFHW, among other factors. While some constraints on RTA model assumptions may be applied through a carefully-designed surveillance and testing program in the field (e.g. to constrain fracture geometry), still others require laboratory measurements. In this work, an integrated flowback RTA workflow, designed to reduce uncertainty in derived hydraulic fracture properties, is demonstrated using flowback data from MFHWs producing black oil from low-permeability reservoirs in the Montney and Duvernay formations. The workflow includes rigorous flow-regime identification used for RTA model selection, straight-line analysis (SLA) to provide initial estimates of hydraulic fracture properties, and model history matching of flowback data to refine hydraulic fracture property estimates. The model history matching is performed using a recently-introduced semi-analytical, dual-porosity, dynamic drainage area (DP-DDA) model that incorporates primary (propped) hydraulic fractures (PHF) as well as a dual-porosity enhanced fracture region (EFR) with an unpropped (secondary) fracture network. Inclusion of both the PHF and EFR components addresses the need to incorporate both propped and unpropped fractures and fracture complexity in the modeling. The DP-DDA model is constrained using estimates of propped fracture conductivity and unpropped fracture permeability (measured as a function of stress), and unpropped fracture compressibility values, obtained in the laboratory for Montney and Duvernay core samples. Use of these critical laboratory data serves to improve the confidencein the modeling results. The case studies provided herein demonstrate a rigorous workflow for obtaining more confident hydraulic fracture property estimates from flowback data through the application of RTA techniques constrained by both field and laboratory data.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3