Modeling Hydraulic Fracturing Induced Fracture Networks in Shale Gas Reservoirs as a Dual Porosity System

Author:

Du Changan M.1,Zhang Xu1,Zhan Lang1,Gu Hongren1,Hay Brad1,Tushingham Keith1,Ma Y. Zee1

Affiliation:

1. Schlumberger

Abstract

Abstract Shale gas production from organic rich shale formations is one of the most rapidly expanding areas in oil and gas exploration and production today. Because of extremely low permeability and low porosity, long horizontal wells in conjunction with multi-staged massive hydraulic fracturing treatments (HFT) are required to bring economic productions from shale gas reservoirs. It has been recognized that extensive fracture networks with massive contact surface areas are necessary to support economic productions from these reservoirs. Existing natural fractures observed from borehole images (mostly mineral-filled) and the low contrast of minimum and maximum horizontal stresses are some of the key factors in creation of the post-HFT network fracture system in many shale gas reservoirs. Currently, comprehensive design tools for hydraulic fracturing treatments of shale gas reservoirs appear not available. These tools should have the capabilities to incorporate stress field, natural fractures and lithology heterogeneity of the reservoirs and model complicated fracture networks in shale gas reservoirs. However, microseismic mapping has been widely used to monitor hydraulic fracturing job responses, to help control job execution processes, and to evaluate stimulation results. Microseismic responses reflect the collective effects of the reservoir characteristics and hydraulic fracturing treatments, and can be indicative for the productivity of the post-HFT reservoirs. This study presents a practical methodology to model hydraulic fracturing induced fracture networks in shale gas reservoirs as a dual porosity system. This approach decouples complex reservoir characteristics and geomechanical factors from production response. Microseismic responses are used to delineate stimulated volumes from a HFT. Microseismic events and/or natural fracture intensity, along with HFT data and production history-matching analysis, provide calibration for HFT fracture intensity. The calibrated post-HFT fracture network is crucial for production prediction.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3