Deep Learning for Well Data History Analysis

Author:

Li Yuanjun1,Sun Ruixiao1,Horne Roland1

Affiliation:

1. Stanford University

Abstract

Abstract The rapid development of machine learning algorithms and the massive accumulation of well data from continuous monitoring has enabled new applications in the oil and gas industries. Data gathered from well sensors are a foundation of the oilfield digitization and data-driven analysis. Here, we describe a deep learning approach to predict the long-term well performance based on a moderate duration of well monitoring data. In this study, we first developed the data processing procedures for oilfield time series data and determined the proper selection of data sampling frequency, parameter combinations and data structures for deep learning models. Then we explored how Deep Learning (DL) models can be employed for well data analysis and how can we combine physics and DL models. Recurrent Neural Network (RNN) is a type of sequential DL model, which can be utilized for time series data analysis. This approach preserves preceding information and yields current response with memory of prior well behavior. Two candidate RNN models were tried to determine how well they were able to improve the accuracy and stability of well performance estimates. These two methods are Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM). In addition, a novel combination of RNN with Convolutional Neural Networks (CNNs), Long- and Short-term Time-series network (LSTNet), was also investigated. These various models were tested and compared based on the public production datasets from Volve Field. Both GRU and LSTM achieved higher accuracy in performance prediction compared to the simple RNN. In the case of frequent well shut-in and opening, the failure in capturing fast pressure responses and the extreme fluctuations with the simple RNN ultimately leads to high error. In contrast, LSTNet is more stable to frequent or significant well variations. With advanced deep learning structures, engineers can interpret long-term reservoir performance information from responses estimated by deep learning models, instead of performing costly well tests or shut-ins.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3