Nanotechnology-Assisted EOR Techniques: New Solutions to Old Challenges

Author:

Ayatollahi Shahab1,Zerafat Mohammad M.2

Affiliation:

1. EOR Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran (now with Sharif University of Technology, Tehran, Iran)

2. EOR Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran

Abstract

AbstractEnhanced Oil Recovery techniques are gaining more attention worldwide as the proved oil reserves are declining and the oil price is hiking. Although many giant oil reservoirs in the world were already screened for EOR processes, the main challenges such as low sweep efficiency, costly techniques, possible formation damages, transportation of huge amounts of EOR agents to the fields especially for offshore cases, analyzing micro-scale multi-phase flow in the rock to the large scale tests and the lack of analyzing tools in traditional experimental works, hinder the proposed EOR processes.Our past experiences on using nanotechnology to the upstream cases, especially EOR processes, revealed solutions to some of the challenges associated with old EOR techniques. This method that utilizes particles in the order of 1 to100nm brings specific thermal, optical, electrical, rheological and interfacial properties which are directly useful to release the trapped oil from the pore spaces in the order of 5 to 50 microns of tight oil formations.Laboratory tests using nanoparticles as the EOR agent, developing nano computational models to explore the surface properties and utilizing nano-scale analyzing tools such as atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) mostly for nanoparticles distribution in the pore spaces and on the surfaces for wettability alteration studies are the main parts of this investigation.This paper summarizes new findings from several different theoretical, analytical and experimental works which shows the effectiveness of traditional methods when assisted by this new technology. Ultimately, based on the past experiences, a roadmap will be proposed to avoid the ongoing trial and error practice in this area.

Publisher

SPE

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3