Uncovering Mysteries of Waxphaltenes: Meticulous Experimental Studies of Field and Lab Deposits Unveil Nature of Wax-Asphaltene Intermolecular Interactions

Author:

Aguiar Janaina I. S.1,Samouei Hamidreza2,Mahmoudkhani Amir1

Affiliation:

1. Locus Bio-Energy Solutions

2. Texas A&M University

Abstract

Abstract In recent years, the utilization of modern sampling tools provided access to the field deposits from several offshore and onshore wells producing asphaltenic crudes. Compositional analysis of field deposits revealed the presence of asphaltenes and wax as major fractions, while system conditions traditionally implied precipitation and deposition of asphaltenes only. Most of the previous studies on organic deposition have been conducted with the key assumption that aggregation and precipitation of wax and asphaltene occur independently. A few researchers investigated the solubility parameter's alteration, but they did not incorporate waxes found in the oilfield deposits. This study aims to investigate the nature of "waxphaltenes"; from intermolecular interactions between asphaltenes and wax in samples collected from fields and made in the laboratory. Asphaltenes samples were extracted and fully characterized by proton nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR). Paraffin waxes were identified using gas chromatography (GC), differential scanning calorimetry (DSC), NMR, and FTIR. Precipitation tests of asphaltenes with n-heptane at high temperature were performed both in the presence and absence of wax; GC, NMR and FTIR techniques evaluated the precipitates and the material dispersed in solution. It was found that asphaltenes co-precipitated with waxes even at higher temperatures than the normal wax appearance temperature (WAT) of the crude oil or the model solutions and that long and medium size paraffin waxes had higher tendencies to coprecipitate with asphaltenes than either short chain or very long chain paraffin hydrocarbons. The results also indicated that the amount of wax that co-precipitates with asphaltenes was more related to asphaltene structure but is independent of the asphaltenes or wax content. Heteroatoms played an important role in the interactions between wax and asphaltenes during precipitation and separation.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3