Post Yield Strain Fatigue Experiments to Validate Low Cycle Methodology for Tubular and Connections

Author:

Krishna Shree1,Milligan Ryan1,George Ken1,Krishnamurthy Ravi M.1,Powers Jim2,Krener III John2

Affiliation:

1. Blade Energy Partners

2. Chevron USA, Inc.

Abstract

Abstract Post yield design methodology using Ductile Failure Damage Indicator (DFDI) for well tubulars was proposed and has been used for tubulars and connections life assessment. The tubular design assessment model incorporates a connection strain localization factor (SLF) to assess the fatigue life of the tubulars. Critical strain, a material-dependent parameter essential for DFDI, is obtained using the uniaxial stress-strain tests (i.e., strained to failure uniaxial tests). Understanding the impact of accumulated cyclic damage on critical strain is essential to the post-yield design approach. This paper aims to validate and evolve the low cycle methodology by 1) quantifying the effect of accumulating cyclic plastic strain on the critical strain through a series of post-yield axial and thermal strain fatigue experiments, and 2) applying the post-yield design approach to assess tubulars and connections. Low cycle fatigue experiments demonstrating the critical strain measurement and its dependency on the thermal and axial-strain cycles will be discussed in the paper. Critical strain (K55 and L80) from monotonic tests is compared to critical strain obtained from cyclically preconditioned samples. Effect of cyclic plasticity on critical strain is established quantitatively. Coupons are also subjected to the post-yield axial and thermal cycles to failure and compared to critical strain-based DFDI design predictions. Since connections are known to be the weakest link in the casing system, the impact of connection thread-forms on the strain localization factor is demonstrated using a series of finite element models and the experimental material responses. Axial strain-controlled loading would be applied on the tubulars and connections to estimate the damage using the DFDI approach. A systematic approach to delineate the dependency of critical strain on cyclic straining validates the effectiveness of DFDI in thermal well design. Further, the quantification of SLF for integrating connection into thermal well design provides a complete solution.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3