Modeling Low-Salinity Waterflooding

Author:

Jerauld Gary R.1,Lin C. Y.1,Webb Kevin J.1,Seccombe Jim C.1

Affiliation:

1. BP

Abstract

Summary Low-salinity waterflooding is an emerging enhanced-oil-recovery (EOR) technique in which the salinity of the injected water is controlled to improve oil recovery vs. conventional, higher-salinity waterflooding. Corefloods and single-well chemical-tracer tests have shown that low-salinity waterflooding can improve basic waterflood performance by 5 to 38%. This paper describes a model of low-salinity flooding that can be used to evaluate projects; shows the implications of that model and demonstrates its use to represent corefloods, single-well tests, and field-scale simulations; and gives insight into the reservoir engineering of low-salinity floods. The model represents low-salinity flooding using salinity-dependent oil/water relative permeability functions resulting from wettability change. This is similar to other EOR modeling, and conventional fractional-flow theory can be adapted to describe the process in 1D for secondary and tertiary low-salinity waterflooding. This simple analysis shows that while some degree of connate-water banking occurs, it need not hinder the process. Mixing of injected water with in-situ water delays the attainment of low salinity, potentially preventing attainment of low salinity all together if very small slugs of low-salinity water are used. This paper demonstrates the importance of mixing to modeling of low-salinity flooding and suggests addressing it in engineering calculations. Care must be taken in representing mixing appropriately in interpreting data and in constructing models. The use of numerical dispersion to represent physical dispersion in 1D, radial, and pattern simulations of this process is demonstrated (i.e., coarse-grid simulations are shown to give the same result as fine-grid simulations with an appropriately large physical dispersion). In many applications, the fine-grid simulation necessary to represent appropriate levels of dispersion is not practical, and pseudoization is necessary. We demonstrate that this can be achieved by changing the salinity dependence and shapes of relative permeability curves.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3