Economic Comparisons of Barge-Mounted Plants and Conventional Offshore Gas Field Development by the Present-Value Method

Author:

Kulachol Konthi1,Marsden S.S.1

Affiliation:

1. Stanford U.

Abstract

Summary A method is proposed for developing offshore natural gas fields by using subsea completions, flexible risers, and barge-mounted methanol plants operating at sea above the gas fields. This method is compared economically with a conventional one, which uses platforms for drilling and field operation plus a pipeline to bring the gas ashore. Both capital as well as operating/maintenance costs are compared. Many fields, particularly the smaller ones farther from shore, would be more profitably particularly the smaller ones farther from shore, would be more profitably developed by using the methanol approach. Introduction Offshore natural gas is one of our major energy resources that so far has been developed only in those few places that are located near major markets. The development technology exists but the cost is very high. There is clearly an incentive to devise more economical ways of producing at least some of this natural gas. Any new method must stand the test of comparison with conventional ones under a variety of scenarios. In this paper, we economically compare conventional offshore gas field development paper, we economically compare conventional offshore gas field development with a new method based on barge-mounted methanol plants (BMMPs). This is done for differently sized fields in waters of different depths and in locations having different climatic conditions. The approach used allows a relatively quick comparison of the two methods for new fields in other locations. Methanol Many readers may wonder what methanol is and why it should be produced. While this has been reviewed extensively recently, we present some of the more important aspects here. Methanol is a colorless, combustible liquid with a boiling point of about 149F [65C]. While it can be manufactured from coal, wood, and various organic materials, it is now commonly made from natural gas. It is miscible with water and gasoline, but when both liquids are present, most of the methanol tends to go into the aqueous phase. At one time it was widely used as "temporary" antifreeze in automobile engine cooling systems, but now it is used mainly as a solvent and to make other petrochemicals such as formaldehyde. While it can be toxic if ingested or improperly handled, it is probably no worse than gasoline, which we have managed to live with. Most people are familiar with the use of ethanol solutions in gasoline (frequently known as "gasohol,") but relatively few know about the extensive testing of methanol solutions in gasoline for the same use. Not only is the latter technically feasible, but the economics are superior because methanol costs less than a quarter of what ethanol does and is even less expensive than gasoline. As is the case with "neat" ethanol in Brazil, a fuel-grade methanol (FGM) also can be used in car engines specially designed for alcohols. Methanol can be used to make other effective gasoline blending agents, such as methyl tertiary butyl ether (MTBE), or can he converted to high-octane gasoline by means of Mobil's methanol-to-gasoline (MTG) process now being implemented in New Zealand. Methanol has been tested successfully in full-sized turbo-electric generators and has been found to produce significantly less air pollution than the fuel oils it replaced. More recently it also has been tested successfully in some modified diesel engines. Although occasionally there are minor technical problems in some of these applications, they have been solved elsewhere. Even though there was a methanol shortage in the world markets several years ago, there is currently a surplus. Future projections of the supply-demand situation are difficult because no one knows how fast these new potential markets might develop. To be prepared for this, it is helpful to know the relative costs of developing and producing remote offshore gas fields by using BMMP's and conventional methods. Components of the Two Development Schemes Conventional Method In both this method and that of the BMMP, we assume that the offshore field has been discovered by use of the floating or semisubmersible drilling platform and then delineated by use of geophysical or other methods. Hence, these costs will be the same for both methods. For drilling of the field and production of the gas, a platform will be needed, the cost of which will be determined primarily by water depth, number of wells, and climatic conditions. Finally, a pipeline will be needed to bring the gas ashore. JPT p. 469

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3