A Four-Phase Chemical/Gas Model in an Implicit-Pressure/Explicit-Concentration Reservoir Simulator

Author:

Lashgari Hamid R.1,Sepehrnoori Kamy1,Delshad Mojdeh1

Affiliation:

1. University of Texas at Austin

Abstract

Summary This study describes a general four-phase model developed for gas/oil/water/microemulsion (ME) coexisting at local equilibrium. The original framework of a chemical reservoir simulator is used to implement the model. This model represents a new method to couple the black-oil model with surfactant-phase behavior [i.e., the Hand (1939) rule]. The Hand (1939) rule is used to capture the equilibrium among surfactant, oil, and water species as a function of salinity and species concentrations for oil/water/ME phases. The interphase-mass transfer between gas/oil in the presence of the ME phase is calculated at the equilibrium between phases. For this purpose, a new volume-balance equation is derived to consider the pressure equation for compressible and real mixing in such a model. Hence, the pressure equation is derived by extending the black-oil model to a pseudocompositional model for a wide range of components (water, oil, surfactant, polymer, anion, cation, alcohol, and gas). Mass-balance equations are then solved for the components to calculate the concentration. Finally, we implemented the coupled surfactant and black-oil phase-behavior models and the fluid-flow formulations in an implicit-pressure/explicit-concentration (IMPEC) chemical-flooding simulator: UTCHEM (2011) four-phase. The results were verified against existing reservoir simulators for two different three-phase test cases comprising gas/oil/water and oil/water/ME. Then, the performance of the model in the presence of four phases was tested and validated against coreflood experimental data. The results showed that the new phase behavior and the fluid-flow equations are consistent with three-phase reservoir simulators for the case studies. In addition, the findings of this work can be used to model and capture the mechanisms behind processes such as micellar slug foam and alkaline and surfactant flooding into saturated (gas cap) reservoirs as well as alternating or coinjection of surfactant and gas processes. Modeling of such processes is far from satisfactory in existing phase behavior and fluid-flow simulators.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3