Experimental and Numerical Evaluation of Carbonated Water Injection (CWI) for Improved Oil Recovery and CO2 Storage

Author:

Kechut Nor Idah1,Sohrabi Mehran1,Jamiolahmady Mahmoud1

Affiliation:

1. Heriot Watt University

Abstract

Abstract One of the well-known problems in CO2 enhanced oil recovery (EOR) processes is the poor sweep efficiency due to the high viscosity contrast between CO2 and the reservoir resident fluids (oil and brine). CO2-augmented waterflooding or carbonated water injection (CWI) could lessen this problem. As CO2 is dissolved in and transported by the flood water, CO2 is more evenly distributed within the reservoir thus improves the sweep efficiency. This is beneficial to watered-out oil reservoirs where high water saturations could adversely affect the performance of the conventional CO2 injections. CWI also provides a very safe method for storing large quantities of CO2 as a dissolved phase in oil reservoirs. This paper presents the results of our experimental and numerical investigations on the oil recovery and CO2 storage benefits of CWI in secondary and tertiary recovery modes through a series of coreflood experiments and detailed compositional simulation. The experiments were performed in a water-wet Clashach core with decane as well as restored North Sea reservoir core with stock tank crude oil and seawater at reservoir conditions. The experimental results demonstrate that CWI in both secondary and tertiary recovery modes can improve the oil recovery above the plain waterflooding. 45-51% of the injected CO2 was stored in the core at the end of the coreflood tests indicating the high potential of CWI not only for EOR but also as a CO2 storage injection strategy. Results of the corefloods were used to assess the capabilities and limitations of a commercial compositional flow simulator in modelling the CWI process. The simulation results show that diffusion should be taken into account to properly model the CWI process at the core scale. Using the commercially available reservoir simulators with the instantaneous equilibrium and complete mixing assumptions would lead to inaccurate evaluation of CWI process at this scale of interest.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3