Investigation of Dehydroxylated Sodium Bentonite as a Pozzolanic Extender in Oil-Well Cement

Author:

Adjei Stephen1,Elkatatny Salaheldin2,Sarmah Pranjal3,Chinea Gonzalo3

Affiliation:

1. King Fahd University of Petroleum & Minerals

2. King Fahd University of Petroleum & Minerals (Corresponding author; email: elkatatny@kfupm.edu.sa)

3. Baker Hughes

Abstract

Summary Fly ash, which is a pozzolan generated as a byproduct from coal-powered plants, is the most used extender in the design of lightweight cement. However, the coal-powered plants are phasing out due to global-warming concerns. There is the need to investigate other materials as substitutes to fly ash. Bentonite is a natural pozzolanic material that is abundant in nature. This pozzolanic property is enhanced upon heat treatment; however, this material has never been explored in oil-well cementing in such form. This study compares the performance of 13-ppg heated (dehydroxylated) sodium bentonite and fly-ash cement systems. The raw (commercial) sodium bentonite was dehydroxylated at 1,526°F for 3 hours. Cement slurries were prepared at 13 ppg using the heated sodium bentonite as partial replacements of cement in concentrations of 10 to 50% by weight of blend. Various tests were done at a bottomhole static temperature of 120°F, bottomhole circulating temperature of 110°F, and pressure of 1,000 psi or atmospheric pressure. All the dehydroxylated sodium bentonite systems exhibited high stability, thickening times in the range of 3 to 5 hours, and a minimum 24-hour compressive strength of 600 psi. At a concentration of 40 and 50%, the 24-hour compressive strength was approximately 800 and 787 psi, respectively. This was higher than a 13-ppg fly-ash-based cement designed at 40% cement replacement (580 psi).

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3